BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 12147706)

  • 61. Metabolism of pyruvate and malate by isolated fat-cell mitochondria.
    Martin BR; Denton RM
    Biochem J; 1971 Nov; 125(1):105-13. PubMed ID: 5158897
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Regulation of islet beta-cell pyruvate metabolism: interactions of prolactin, glucose, and dexamethasone.
    Arumugam R; Horowitz E; Noland RC; Lu D; Fleenor D; Freemark M
    Endocrinology; 2010 Jul; 151(7):3074-83. PubMed ID: 20484462
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Survey of normal appearing mouse strain which lacks malic enzyme and Nad+-linked glycerol phosphate dehydrogenase: normal pancreatic beta cell function, but abnormal metabolite pattern in skeletal muscle.
    MacDonald MJ; Marshall LK
    Mol Cell Biochem; 2001 Apr; 220(1-2):117-25. PubMed ID: 11451371
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Differences between mouse and rat pancreatic islets: succinate responsiveness, malic enzyme, and anaplerosis.
    MacDonald MJ
    Am J Physiol Endocrinol Metab; 2002 Aug; 283(2):E302-10. PubMed ID: 12110535
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A fatty acid-induced decrease in pyruvate dehydrogenase activity is an important determinant of beta-cell dysfunction in the obese diabetic db/db mouse.
    Zhou YP; Berggren PO; Grill V
    Diabetes; 1996 May; 45(5):580-6. PubMed ID: 8621007
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Angiotensin II type 1 receptor blocker ameliorates overproduction and accumulation of triglyceride in the liver of Zucker fatty rats.
    Ran J; Hirano T; Adachi M
    Am J Physiol Endocrinol Metab; 2004 Aug; 287(2):E227-32. PubMed ID: 15082419
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The oscillatory behavior of pancreatic islets from mice with mitochondrial glycerol-3-phosphate dehydrogenase knockout.
    Ravier MA; Eto K; Jonkers FC; Nenquin M; Kadowaki T; Henquin JC
    J Biol Chem; 2000 Jan; 275(3):1587-93. PubMed ID: 10636849
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Interactions between pyruvate carboxylase and other mitochondrial enzymes.
    Fahien LA; Davis JW; Laboy J
    J Biol Chem; 1993 Aug; 268(24):17935-42. PubMed ID: 8349677
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Localization of pyruvate carboxylase in organic acid-producing Aspergillus strains.
    Bercovitz A; Peleg Y; Battat E; Rokem JS; Goldberg I
    Appl Environ Microbiol; 1990 Jun; 56(6):1594-7. PubMed ID: 2383004
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Pancreatic islet overproduction of H2S and suppressed insulin release in Zucker diabetic rats.
    Wu L; Yang W; Jia X; Yang G; Duridanova D; Cao K; Wang R
    Lab Invest; 2009 Jan; 89(1):59-67. PubMed ID: 19002107
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [Effects of angiotensin II type 1 receptor blocker on triglyceride metabolism in the liver: experiment with Zucker fatty rats].
    Ran JM; Lao GC; Xu G; Xie B; Zhang Y; Liu W; Feng Q; Guo J
    Zhonghua Yi Xue Za Zhi; 2008 Jun; 88(22):1557-61. PubMed ID: 18956640
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The coupling of metabolic to secretory events in pancreatic islets. The cytosolic redox state.
    Sener A; Malaisse-Lagae F; Dufrane SP; Malaisse WJ
    Biochem J; 1984 Jun; 220(2):433-40. PubMed ID: 6378186
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Targeting pyruvate carboxylase reduces gluconeogenesis and adiposity and improves insulin resistance.
    Kumashiro N; Beddow SA; Vatner DF; Majumdar SK; Cantley JL; Guebre-Egziabher F; Fat I; Guigni B; Jurczak MJ; Birkenfeld AL; Kahn M; Perler BK; Puchowicz MA; Manchem VP; Bhanot S; Still CD; Gerhard GS; Petersen KF; Cline GW; Shulman GI; Samuel VT
    Diabetes; 2013 Jul; 62(7):2183-94. PubMed ID: 23423574
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Functional partnership between carbonic anhydrase and malic enzyme in promoting gluconeogenesis in Leishmania major.
    Mondal DK; Pal DS; Abbasi M; Datta R
    FEBS J; 2021 Jul; 288(13):4129-4152. PubMed ID: 33464696
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Variation in characteristics of islets of Langerhans in insulin-resistant, diabetic and non-diabetic-rat strains.
    Jones HB; Nugent D; Jenkins R
    Int J Exp Pathol; 2010 Jun; 91(3):288-301. PubMed ID: 20384904
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Hypersection of pancreatic somatostatin in the obese Zucker rat: effects of food restriction and age.
    Trimble ER; Herberg L; Renold AE
    Diabetes; 1980 Nov; 29(11):889-94. PubMed ID: 6107255
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Production and export of metabolites from liver and heart mitochondria and anaplerosis.
    MacDonald MJ
    Mol Cell Biochem; 2004 Mar; 258(1-2):201-10. PubMed ID: 15030185
    [TBL] [Abstract][Full Text] [Related]  

  • 78. microRNA-375 regulates glucose metabolism-related signaling for insulin secretion.
    Dumortier O; Fabris G; Pisani DF; Casamento V; Gautier N; Hinault C; Lebrun P; Duranton C; Tauc M; Dalle S; Kerr-Conte J; Pattou F; Prentki M; Van Obberghen E
    J Endocrinol; 2020 Jan; 244(1):189-200. PubMed ID: 31697642
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Acetyl-CoA from inflammation-induced fatty acids oxidation promotes hepatic malate-aspartate shuttle activity and glycolysis.
    Wang T; Yao W; Li J; He Q; Shao Y; Huang F
    Am J Physiol Endocrinol Metab; 2018 Oct; 315(4):E496-E510. PubMed ID: 29763372
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Investigating the roles of mitochondrial and cytosolic malic enzyme in insulin secretion.
    Pongratz RL; Kibbey RG; Cline GW
    Methods Enzymol; 2009; 457():425-50. PubMed ID: 19426882
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.