BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 12147841)

  • 1. Feasibility of in vivo multichannel optical imaging of gene expression: experimental study in mice.
    Mahmood U; Tung CH; Tang Y; Weissleder R
    Radiology; 2002 Aug; 224(2):446-51. PubMed ID: 12147841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catheter-based in vivo imaging of enzyme activity and gene expression: feasibility study in mice.
    Funovics MA; Weissleder R; Mahmood U
    Radiology; 2004 Jun; 231(3):659-66. PubMed ID: 15163807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved in vivo whole-animal detection limits of green fluorescent protein-expressing tumor lines by spectral fluorescence imaging.
    Tam JM; Upadhyay R; Pittet MJ; Weissleder R; Mahmood U
    Mol Imaging; 2007; 6(4):269-76. PubMed ID: 17711782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualization of intrathoracically disseminated solid tumors in mice with optical imaging by telomerase-specific amplification of a transferred green fluorescent protein gene.
    Umeoka T; Kawashima T; Kagawa S; Teraishi F; Taki M; Nishizaki M; Kyo S; Nagai K; Urata Y; Tanaka N; Fujiwara T
    Cancer Res; 2004 Sep; 64(17):6259-65. PubMed ID: 15342413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-based imaging of green fluorescent protein-positive ovarian cancer xenografts during therapy.
    Chaudhuri TR; Mountz JM; Rogers BE; Partridge EE; Zinn KR
    Gynecol Oncol; 2001 Sep; 82(3):581-9. PubMed ID: 11520161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging of differential protease expression in breast cancers for detection of aggressive tumor phenotypes.
    Bremer C; Tung CH; Bogdanov A; Weissleder R
    Radiology; 2002 Mar; 222(3):814-8. PubMed ID: 11867806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-infrared optical imaging of epidermal growth factor receptor in breast cancer xenografts.
    Ke S; Wen X; Gurfinkel M; Charnsangavej C; Wallace S; Sevick-Muraca EM; Li C
    Cancer Res; 2003 Nov; 63(22):7870-5. PubMed ID: 14633715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Digital optical imaging of green fluorescent proteins for tracking vascular gene expression: feasibility study in rabbit and human cell models.
    Yang X; Liu H; Li D; Zhou X; Jung WC; Deans AE; Cui Y; Cheng L
    Radiology; 2001 Apr; 219(1):171-5. PubMed ID: 11274553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry.
    Telford W; Murga M; Hawley T; Hawley R; Packard B; Komoriya A; Haas F; Hubert C
    Cytometry A; 2005 Nov; 68(1):36-44. PubMed ID: 16163703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility, sensitivity, and reliability of laser-induced fluorescence imaging of green fluorescent protein-expressing tumors in vivo.
    Wack S; Hajri A; Heisel F; Sowinska M; Berger C; Whelan M; Marescaux J; Aprahamian M
    Mol Ther; 2003 Jun; 7(6):765-73. PubMed ID: 12788650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging tumor angiogenesis with fluorescent proteins.
    Hoffman RM
    APMIS; 2004; 112(7-8):441-9. PubMed ID: 15563308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transgenic nude mouse with ubiquitous green fluorescent protein expression as a host for human tumors.
    Yang M; Reynoso J; Jiang P; Li L; Moossa AR; Hoffman RM
    Cancer Res; 2004 Dec; 64(23):8651-6. PubMed ID: 15574773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-infrared optical imaging of protease activity for tumor detection.
    Mahmood U; Tung CH; Bogdanov A; Weissleder R
    Radiology; 1999 Dec; 213(3):866-70. PubMed ID: 10580968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular activation of the self-quenched fluorescent reporter probe in tumor microenvironment.
    Bogdanov AA; Lin CP; Simonova M; Matuszewski L; Weissleder R
    Neoplasia; 2002; 4(3):228-36. PubMed ID: 11988842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo measurement of vascular modulation in experimental tumors using a fluorescent contrast agent.
    Valentini G; D'Andrea C; Ferrari R; Pifferi A; Cubeddu R; Martinelli M; Natoli C; Ubezio P; Giavazzi R
    Photochem Photobiol; 2008; 84(5):1249-56. PubMed ID: 18422875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new configuration of the Zeiss LSM 510 for simultaneous optical separation of green and red fluorescent protein pairs.
    Anderson KI; Sanderson J; Gerwig S; Peychl J
    Cytometry A; 2006 Aug; 69(8):920-9. PubMed ID: 16969813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Host glial cell canceration induced by glioma stem cells in GFP/RFP dual fluorescence orthotopic glioma models in nude mice].
    Chen YM; Fei XF; Wang AD; Dai XL; Zhang JS; Cui BQ; Zhang QB; Zhao YD; Chen H; Wang ZM; Lan Q; Dong J; Huang Q
    Zhonghua Zhong Liu Za Zhi; 2013 Jan; 35(1):5-10. PubMed ID: 23648292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo imaging of nuclear-cytoplasmic deformation and partition during cancer cell death due to immune rejection.
    Amoh Y; Hamada Y; Katsuoka K; Hoffman RM
    J Cell Biochem; 2012 Feb; 113(2):465-72. PubMed ID: 21938737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous fluorescence imaging of protease expression and vascularity during murine colonoscopy for colonic lesion characterization.
    Funovics MA; Alencar H; Montet X; Weissleder R; Mahmood U
    Gastrointest Endosc; 2006 Oct; 64(4):589-97. PubMed ID: 16996355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-invasive assessment of cutaneous wound healing using fluorescent imaging.
    Lee O; Kim J; Park G; Kim M; Son S; Ha S; Oh C
    Skin Res Technol; 2015 Feb; 21(1):108-13. PubMed ID: 25066671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.