These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 12147841)
1. Feasibility of in vivo multichannel optical imaging of gene expression: experimental study in mice. Mahmood U; Tung CH; Tang Y; Weissleder R Radiology; 2002 Aug; 224(2):446-51. PubMed ID: 12147841 [TBL] [Abstract][Full Text] [Related]
2. Catheter-based in vivo imaging of enzyme activity and gene expression: feasibility study in mice. Funovics MA; Weissleder R; Mahmood U Radiology; 2004 Jun; 231(3):659-66. PubMed ID: 15163807 [TBL] [Abstract][Full Text] [Related]
3. Improved in vivo whole-animal detection limits of green fluorescent protein-expressing tumor lines by spectral fluorescence imaging. Tam JM; Upadhyay R; Pittet MJ; Weissleder R; Mahmood U Mol Imaging; 2007; 6(4):269-76. PubMed ID: 17711782 [TBL] [Abstract][Full Text] [Related]
4. Visualization of intrathoracically disseminated solid tumors in mice with optical imaging by telomerase-specific amplification of a transferred green fluorescent protein gene. Umeoka T; Kawashima T; Kagawa S; Teraishi F; Taki M; Nishizaki M; Kyo S; Nagai K; Urata Y; Tanaka N; Fujiwara T Cancer Res; 2004 Sep; 64(17):6259-65. PubMed ID: 15342413 [TBL] [Abstract][Full Text] [Related]
5. Light-based imaging of green fluorescent protein-positive ovarian cancer xenografts during therapy. Chaudhuri TR; Mountz JM; Rogers BE; Partridge EE; Zinn KR Gynecol Oncol; 2001 Sep; 82(3):581-9. PubMed ID: 11520161 [TBL] [Abstract][Full Text] [Related]
6. Imaging of differential protease expression in breast cancers for detection of aggressive tumor phenotypes. Bremer C; Tung CH; Bogdanov A; Weissleder R Radiology; 2002 Mar; 222(3):814-8. PubMed ID: 11867806 [TBL] [Abstract][Full Text] [Related]
7. Near-infrared optical imaging of epidermal growth factor receptor in breast cancer xenografts. Ke S; Wen X; Gurfinkel M; Charnsangavej C; Wallace S; Sevick-Muraca EM; Li C Cancer Res; 2003 Nov; 63(22):7870-5. PubMed ID: 14633715 [TBL] [Abstract][Full Text] [Related]
8. Digital optical imaging of green fluorescent proteins for tracking vascular gene expression: feasibility study in rabbit and human cell models. Yang X; Liu H; Li D; Zhou X; Jung WC; Deans AE; Cui Y; Cheng L Radiology; 2001 Apr; 219(1):171-5. PubMed ID: 11274553 [TBL] [Abstract][Full Text] [Related]
9. DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry. Telford W; Murga M; Hawley T; Hawley R; Packard B; Komoriya A; Haas F; Hubert C Cytometry A; 2005 Nov; 68(1):36-44. PubMed ID: 16163703 [TBL] [Abstract][Full Text] [Related]
10. Feasibility, sensitivity, and reliability of laser-induced fluorescence imaging of green fluorescent protein-expressing tumors in vivo. Wack S; Hajri A; Heisel F; Sowinska M; Berger C; Whelan M; Marescaux J; Aprahamian M Mol Ther; 2003 Jun; 7(6):765-73. PubMed ID: 12788650 [TBL] [Abstract][Full Text] [Related]
12. Transgenic nude mouse with ubiquitous green fluorescent protein expression as a host for human tumors. Yang M; Reynoso J; Jiang P; Li L; Moossa AR; Hoffman RM Cancer Res; 2004 Dec; 64(23):8651-6. PubMed ID: 15574773 [TBL] [Abstract][Full Text] [Related]
13. Near-infrared optical imaging of protease activity for tumor detection. Mahmood U; Tung CH; Bogdanov A; Weissleder R Radiology; 1999 Dec; 213(3):866-70. PubMed ID: 10580968 [TBL] [Abstract][Full Text] [Related]
14. Cellular activation of the self-quenched fluorescent reporter probe in tumor microenvironment. Bogdanov AA; Lin CP; Simonova M; Matuszewski L; Weissleder R Neoplasia; 2002; 4(3):228-36. PubMed ID: 11988842 [TBL] [Abstract][Full Text] [Related]
15. In vivo measurement of vascular modulation in experimental tumors using a fluorescent contrast agent. Valentini G; D'Andrea C; Ferrari R; Pifferi A; Cubeddu R; Martinelli M; Natoli C; Ubezio P; Giavazzi R Photochem Photobiol; 2008; 84(5):1249-56. PubMed ID: 18422875 [TBL] [Abstract][Full Text] [Related]
16. A new configuration of the Zeiss LSM 510 for simultaneous optical separation of green and red fluorescent protein pairs. Anderson KI; Sanderson J; Gerwig S; Peychl J Cytometry A; 2006 Aug; 69(8):920-9. PubMed ID: 16969813 [TBL] [Abstract][Full Text] [Related]
17. [Host glial cell canceration induced by glioma stem cells in GFP/RFP dual fluorescence orthotopic glioma models in nude mice]. Chen YM; Fei XF; Wang AD; Dai XL; Zhang JS; Cui BQ; Zhang QB; Zhao YD; Chen H; Wang ZM; Lan Q; Dong J; Huang Q Zhonghua Zhong Liu Za Zhi; 2013 Jan; 35(1):5-10. PubMed ID: 23648292 [TBL] [Abstract][Full Text] [Related]
18. In vivo imaging of nuclear-cytoplasmic deformation and partition during cancer cell death due to immune rejection. Amoh Y; Hamada Y; Katsuoka K; Hoffman RM J Cell Biochem; 2012 Feb; 113(2):465-72. PubMed ID: 21938737 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous fluorescence imaging of protease expression and vascularity during murine colonoscopy for colonic lesion characterization. Funovics MA; Alencar H; Montet X; Weissleder R; Mahmood U Gastrointest Endosc; 2006 Oct; 64(4):589-97. PubMed ID: 16996355 [TBL] [Abstract][Full Text] [Related]
20. Non-invasive assessment of cutaneous wound healing using fluorescent imaging. Lee O; Kim J; Park G; Kim M; Son S; Ha S; Oh C Skin Res Technol; 2015 Feb; 21(1):108-13. PubMed ID: 25066671 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]