These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 12148098)

  • 1. Effect of low-carbohydrate high-protein diets on acid-base balance, stone-forming propensity, and calcium metabolism.
    Reddy ST; Wang CY; Sakhaee K; Brinkley L; Pak CY
    Am J Kidney Dis; 2002 Aug; 40(2):265-74. PubMed ID: 12148098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship of animal protein-rich diet to kidney stone formation and calcium metabolism.
    Breslau NA; Brinkley L; Hill KD; Pak CY
    J Clin Endocrinol Metab; 1988 Jan; 66(1):140-6. PubMed ID: 2826524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical and stone-risk profiles with topiramate treatment.
    Welch BJ; Graybeal D; Moe OW; Maalouf NM; Sakhaee K
    Am J Kidney Dis; 2006 Oct; 48(4):555-63. PubMed ID: 16997051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of renal stone risk by potassium-magnesium citrate during 5 weeks of bed rest.
    Zerwekh JE; Odvina CV; Wuermser LA; Pak CY
    J Urol; 2007 Jun; 177(6):2179-84. PubMed ID: 17509313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Causes of hypocitraturia in recurrent calcium stone formers: focusing on urinary potassium excretion.
    Domrongkitchaiporn S; Stitchantrakul W; Kochakarn W
    Am J Kidney Dis; 2006 Oct; 48(4):546-54. PubMed ID: 16997050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Body size and 24-hour urine composition.
    Taylor EN; Curhan GC
    Am J Kidney Dis; 2006 Dec; 48(6):905-15. PubMed ID: 17162145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical control of bone loss and stone-forming propensity by potassium-calcium citrate after bariatric surgery.
    Sakhaee K; Griffith C; Pak CY
    Surg Obes Relat Dis; 2012; 8(1):67-72. PubMed ID: 21703942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of high protein diet on stone-forming propensity and bone loss in rats.
    Amanzadeh J; Gitomer WL; Zerwekh JE; Preisig PA; Moe OW; Pak CY; Levi M
    Kidney Int; 2003 Dec; 64(6):2142-9. PubMed ID: 14633136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diet and renal stone formation.
    Trinchieri A
    Minerva Med; 2013 Feb; 104(1):41-54. PubMed ID: 23392537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dietary animal protein and urinary supersaturation in renal stone disease.
    Fellström B; Danielson BG; Karlström B; Lithell H; Ljunghall S; Vessby B
    Proc Eur Dial Transplant Assoc; 1983; 20():411-6. PubMed ID: 6657664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stone forming risk of calcium citrate supplementation in healthy postmenopausal women.
    Sakhaee K; Poindexter JR; Griffith CS; Pak CY
    J Urol; 2004 Sep; 172(3):958-61. PubMed ID: 15311008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lowering dietary protein to U.S. Recommended dietary allowance levels reduces urinary calcium excretion and bone resorption in young women.
    Ince BA; Anderson EJ; Neer RM
    J Clin Endocrinol Metab; 2004 Aug; 89(8):3801-7. PubMed ID: 15292308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of hyperprotidic diet associated or not with hypercalcic diet on calcium oxalate stone formation in rat.
    Sakly R; Bardaoui M; Neffati F; Moussa A; Zakhama A; Najjar MF; Hammami M
    Ann Nutr Metab; 2005; 49(2):132-8. PubMed ID: 15860912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of a low-sodium base-producing diet including red meat compared with a high-carbohydrate, low-fat diet on bone turnover markers in women aged 45-75 years.
    Nowson CA; Patchett A; Wattanapenpaiboon N
    Br J Nutr; 2009 Oct; 102(8):1161-70. PubMed ID: 19445819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute oral calcium-sodium citrate load in healthy males. Effects on acid-base and mineral metabolism, oxalate and other risk factors of stone formation in urine.
    Schwille PO; Schmiedl A; Herrmann U; Schwille R; Fink E; Manoharan M
    Methods Find Exp Clin Pharmacol; 1997; 19(6):417-27. PubMed ID: 9385591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in urinary stone risk factors in hypocitraturic calcium oxalate stone formers treated with dietary sodium supplementation.
    Stoller ML; Chi T; Eisner BH; Shami G; Gentle DL
    J Urol; 2009 Mar; 181(3):1140-4. PubMed ID: 19152919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Animal protein and the risk of kidney stones: a comparative metabolic study of animal protein sources.
    Tracy CR; Best S; Bagrodia A; Poindexter JR; Adams-Huet B; Sakhaee K; Maalouf N; Pak CY; Pearle MS
    J Urol; 2014 Jul; 192(1):137-41. PubMed ID: 24518789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of calcium supplements on the risk of renal stone formation in a population with low oxalate intake.
    Stitchantrakul W; Sopassathit W; Prapaipanich S; Domrongkitchaiporn S
    Southeast Asian J Trop Med Public Health; 2004 Dec; 35(4):1028-33. PubMed ID: 15916110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The potential role of salt abuse on the risk for kidney stone formation.
    Sakhaee K; Harvey JA; Padalino PK; Whitson P; Pak CY
    J Urol; 1993 Aug; 150(2 Pt 1):310-2. PubMed ID: 8326549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate.
    Sebastian A; Harris ST; Ottaway JH; Todd KM; Morris RC
    N Engl J Med; 1994 Jun; 330(25):1776-81. PubMed ID: 8190153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.