These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 12148772)

  • 1. Fe Boltzmann temperature lidar: design, error analysis, and initial results at the north and south poles.
    Chu X; Pan W; Papen GC; Gardner CS; Gelbwachs JA
    Appl Opt; 2002 Jul; 41(21):4400-10. PubMed ID: 12148772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of an fe boltzmann temperature lidar with a na narrow-band lidar.
    Papen GC; Treyer D
    Appl Opt; 1998 Dec; 37(36):8477-81. PubMed ID: 18301676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron Boltzmann factor LIDAR: proposed new remote-sensing technique for mesospheric temperature.
    Gelbwachs JA
    Appl Opt; 1994 Oct; 33(30):7151-6. PubMed ID: 20941268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation and optimization of Fe resonance fluorescence lidar performance for temperature-wind measurement.
    Li C; Wu D; Deng Q; Cui F; Zhong Z; Liu D; Wang Y
    Opt Express; 2022 Apr; 30(8):13278-13293. PubMed ID: 35472944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-efficiency receiver architecture for resonance-fluorescence and Doppler lidars.
    Smith JA; Chu X
    Appl Opt; 2015 Apr; 54(11):3173-84. PubMed ID: 25967301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of a field-widened Mach-Zehnder receiver to extend Fe Doppler lidar wind measurements from the thermosphere to the ground.
    Smith JA; Chu X
    Appl Opt; 2016 Feb; 55(6):1366-80. PubMed ID: 26906590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-spectral-resolution fluorescence light detection and ranging for mesospheric sodium temperature measurements.
    She CY; Yu JR; Latifi H; Bills RE
    Appl Opt; 1992 Apr; 31(12):2095-106. PubMed ID: 20720864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First Simultaneous Lidar Observations of Thermosphere-Ionosphere Fe and Na (TIFe and TINa) Layers at McMurdo (77.84°S, 166.67°E), Antarctica With Concurrent Measurements of Aurora Activity, Enhanced Ionization Layers, and Converging Electric Field.
    Chu X; Nishimura Y; Xu Z; Yu Z; Plane JMC; Gardner CS; Ogawa Y
    Geophys Res Lett; 2020 Oct; 47(20):e2020GL090181. PubMed ID: 33281241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium temperature/wind lidar based on laser-diode-pumped Nd:YAG lasers deployed at Tromsø, Norway (69.6°N, 19.2°E).
    Kawahara TD; Nozawa S; Saito N; Kawabata T; Tsuda TT; Wada S
    Opt Express; 2017 Jun; 25(12):A491-A501. PubMed ID: 28788880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lidar measurements taken with a large-aperture liquid mirror. 2. Sodium resonance-fluorescence system.
    Argall PS; Vassiliev ON; Sica RJ; Mwangi MM
    Appl Opt; 2000 May; 39(15):2393-400. PubMed ID: 18345149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scanning iron temperature lidar for mesopause temperature observation.
    Lautenbach J; Höffner J
    Appl Opt; 2004 Aug; 43(23):4559-63. PubMed ID: 15376432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced mesospheric temperature mapper for high-latitude airglow studies.
    Pautet PD; Taylor MJ; Pendleton WR; Zhao Y; Yuan T; Esplin R; McLain D
    Appl Opt; 2014 Sep; 53(26):5934-43. PubMed ID: 25321674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New technique for retrieval of atmospheric temperature profiles from Rayleigh-scatter lidar measurements using nonlinear inversion.
    Khanna J; Bandoro J; Sica RJ; McElroy CT
    Appl Opt; 2012 Nov; 51(33):7945-52. PubMed ID: 23207304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eliminating photon noise biases in the computation of second-order statistics of lidar temperature, wind, and species measurements.
    Gardner CS; Chu X
    Appl Opt; 2020 Sep; 59(27):8259-8271. PubMed ID: 32976411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of a potassium lidar system for upper-atmospheric wind-temperature measurements.
    Papen GC; Gardner CS; Pfenninger WM
    Appl Opt; 1995 Oct; 34(30):6950-8. PubMed ID: 21060557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solar cycle response and long-term trends in the mesospheric metal layers.
    Dawkins ECM; Plane JMC; Chipperfield MP; Feng W; Marsh DR; Höffner J; Janches D
    J Geophys Res Space Phys; 2016 Jul; 121(7):7153-7165. PubMed ID: 31404353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of lidar systems for profiling aurorally excited molecular species.
    Collins RL; Lummerzheim D; Smith RW
    Appl Opt; 1997 Aug; 36(24):6024-34. PubMed ID: 18259447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution lidar observations of mesospheric sodium and implications for adaptive optics.
    Pfrommer T; Hickson P
    J Opt Soc Am A Opt Image Sci Vis; 2010 Nov; 27(11):A97-105. PubMed ID: 21045896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-photon lidar technique for remote sensing of atomic oxygen.
    McLlrath TJ; Hudson R; Aikin A; Wilkerson TD
    Appl Opt; 1979 Feb; 18(3):316-9. PubMed ID: 20208711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mobile Rayleigh Doppler lidar for wind and temperature measurements in the stratosphere and lower mesosphere.
    Dou X; Han Y; Sun D; Xia H; Shu Z; Zhao R; Shangguan M; Guo J
    Opt Express; 2014 Aug; 22 Suppl 5():A1203-21. PubMed ID: 25322175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.