BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 12148839)

  • 21. Further effects of chlorpromazine on the hexose permeability of the human erythrocyte.
    Baker GF; Rogers HJ
    J Physiol; 1973 Aug; 232(3):597-608. PubMed ID: 4759682
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glucose transport inhibitors protect against 1,2-cyclohexanedione-produced potassium loss from human red blood cells.
    Baker GF; O'Gorman R; Baker P
    Exp Physiol; 1998 Mar; 83(2):239-42. PubMed ID: 9568484
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reduction of red cell glucose transporter intrinsic activity in diabetes running.
    Comi RJ; Hamilton H
    Horm Metab Res; 1994 Jan; 26(1):26-32. PubMed ID: 8150420
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Piracetam and TRH analogues antagonise inhibition by barbiturates, diazepam, melatonin and galanin of human erythrocyte D-glucose transport.
    Naftalin RJ; Cunningham P; Afzal-Ahmed I
    Br J Pharmacol; 2004 Jun; 142(3):594-608. PubMed ID: 15148255
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of pH on the activity of the human red cell glucose transporter Glut 1: transport retention chromatography of D-glucose and L-glucose on immobilized Glut 1 liposomes.
    Lu L; Brekkan E; Haneskog L; Yang Q; Lundahl P
    Biochim Biophys Acta; 1993 Aug; 1150(2):135-46. PubMed ID: 8347668
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Barbiturate inhibition of GLUT-1 mediated hexose transport in human erythrocytes exhibits substrate dependence for equilibrium exchange but not unidirectional sugar flux.
    el-Barbary A; Fenstermacher JD; Haspel HC
    Biochemistry; 1996 Dec; 35(48):15222-7. PubMed ID: 8952470
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition of glucose transport in human erythrocytes by ubiquinone Q0.
    Lowe AG; Critchley AJ; Brass A
    Biochim Biophys Acta; 1991 Nov; 1069(2):223-8. PubMed ID: 1932061
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of pressure on glucose transport in human erythrocytes.
    Thorne SD; Hall AC; Lowe AG
    FEBS Lett; 1992 Apr; 301(3):299-302. PubMed ID: 1577170
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hexose transporter GLUT1 harbors several distinct regulatory binding sites for flavones and tyrphostins.
    PĂ©rez A; Ojeda P; Ojeda L; Salas M; Rivas CI; Vera JC; Reyes AM
    Biochemistry; 2011 Oct; 50(41):8834-45. PubMed ID: 21899256
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural requirements for binding to the sugar-transport system of the human erythrocyte.
    Barnett JE; Holman GD; Munday KA
    Biochem J; 1973 Feb; 131(2):211-21. PubMed ID: 4722437
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibitions of sugar transport produced by ligands binding at opposite sides of the membrane. Evidence for simultaneous occupation of the carrier by maltose and cytochalasin B.
    Carruthers A; Helgerson AL
    Biochemistry; 1991 Apr; 30(16):3907-15. PubMed ID: 2018762
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of GLUT1-mediated sugar transport by an antiport/uniport switch mechanism.
    Cloherty EK; Diamond DL; Heard KS; Carruthers A
    Biochemistry; 1996 Oct; 35(40):13231-9. PubMed ID: 8855962
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A single half-turnover of the glucose carrier of the human erythrocyte.
    Lowe AG; Walmsley AR
    Biochim Biophys Acta; 1987 Oct; 903(3):547-50. PubMed ID: 3663659
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Properties of the human erythrocyte glucose transport protein are determined by cellular context.
    Levine KB; Robichaud TK; Hamill S; Sultzman LA; Carruthers A
    Biochemistry; 2005 Apr; 44(15):5606-16. PubMed ID: 15823019
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The one-site model of human erythrocyte glucose transport: testing its predictions using network thermodynamic computer simulations.
    May JM
    Biochim Biophys Acta; 1991 Apr; 1064(1):1-6. PubMed ID: 2025630
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The competitive inhibition of glucose transport in human erythrocytes by compounds of different structures.
    Lacko L; Wittke B
    Biochem Pharmacol; 1982 May; 31(10):1925-9. PubMed ID: 7104025
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alterations in red blood cell sugar transport by nanomolar concentrations of alkyl lysophospholipid.
    Melchior DL; Carruthers A; Makriyannis A; Duclos RI; Abdel-Mageed OH
    Biochim Biophys Acta; 1990 Sep; 1028(1):1-8. PubMed ID: 2207116
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transport function and subcellular distribution of purified human erythrocyte glucose transporter reconstituted into rat adipocytes.
    Jo I; Hah JS; Rampal AL; Chakrabarti R; Paterson AR; Craik JD; Cass CE; Zobel CR; Jung CY
    Biochim Biophys Acta; 1992 Apr; 1106(1):45-55. PubMed ID: 1581335
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Binding of cytochalasin B to human erythrocyte glucose transporter.
    Sogin DC; Hinkle PC
    Biochemistry; 1980 Nov; 19(23):5417-20. PubMed ID: 7192569
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stop-flow analysis of cooperative interactions between GLUT1 sugar import and export sites.
    Sultzman LA; Carruthers A
    Biochemistry; 1999 May; 38(20):6640-50. PubMed ID: 10350483
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.