These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
68. Phase shifts in circadian peripheral clocks caused by exercise are dependent on the feeding schedule in PER2::LUC mice. Sasaki H; Hattori Y; Ikeda Y; Kamagata M; Iwami S; Yasuda S; Shibata S Chronobiol Int; 2016; 33(7):849-62. PubMed ID: 27123825 [TBL] [Abstract][Full Text] [Related]
69. Circadian regulation of mammalian target of rapamycin signaling in the mouse suprachiasmatic nucleus. Cao R; Anderson FE; Jung YJ; Dziema H; Obrietan K Neuroscience; 2011 May; 181():79-88. PubMed ID: 21382453 [TBL] [Abstract][Full Text] [Related]
70. Coupling Between Subregional Oscillators Within the Suprachiasmatic Nucleus Determines Free-Running Period in the Rat. Schwartz MD; Cambras T; Díez-Noguera A; Campuzano A; Oda GA; Yamazaki S; de la Iglesia HO J Biol Rhythms; 2022 Dec; 37(6):620-630. PubMed ID: 36181312 [TBL] [Abstract][Full Text] [Related]
71. Entrainment of the circadian clock in the liver by feeding. Stokkan KA; Yamazaki S; Tei H; Sakaki Y; Menaker M Science; 2001 Jan; 291(5503):490-3. PubMed ID: 11161204 [TBL] [Abstract][Full Text] [Related]
72. Daily rhythms in PER1 within and beyond the suprachiasmatic nucleus of female grass rats (Arvicanthis niloticus). Ramanathan C; Nunez AA; Smale L Neuroscience; 2008 Sep; 156(1):48-58. PubMed ID: 18692118 [TBL] [Abstract][Full Text] [Related]
73. On the communication pathways between the central pacemaker and peripheral oscillators. Cermakian N; Pando MP; Doi M; Cardone L; Yujnovsky I; Morse D; Sassone-Corsi P Novartis Found Symp; 2003; 253():126-36; discussion 136-9. PubMed ID: 14712918 [TBL] [Abstract][Full Text] [Related]
74. System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. Kornmann B; Schaad O; Bujard H; Takahashi JS; Schibler U PLoS Biol; 2007 Feb; 5(2):e34. PubMed ID: 17298173 [TBL] [Abstract][Full Text] [Related]
75. Circadian and photic regulation of clock and clock-controlled proteins in the suprachiasmatic nuclei of calorie-restricted mice. Mendoza J; Pévet P; Challet E Eur J Neurosci; 2007 Jun; 25(12):3691-701. PubMed ID: 17610588 [TBL] [Abstract][Full Text] [Related]
76. Effect of dark exposure in the middle of the day on Period1, Period2, and arylalkylamine N-acetyltransferase mRNA levels in the rat suprachiasmatic nucleus and pineal gland. Fukuhara C Brain Res Mol Brain Res; 2004 Nov; 130(1-2):109-14. PubMed ID: 15519681 [TBL] [Abstract][Full Text] [Related]
78. Phase-dependent responses of Per1 and Per2 genes to a light-stimulus in the suprachiasmatic nucleus of the rat. Miyake S; Sumi Y; Yan L; Takekida S; Fukuyama T; Ishida Y; Yamaguchi S; Yagita K; Okamura H Neurosci Lett; 2000 Nov; 294(1):41-4. PubMed ID: 11044582 [TBL] [Abstract][Full Text] [Related]
79. Melatonin, the pineal gland, and circadian rhythms. Cassone VM; Warren WS; Brooks DS; Lu J J Biol Rhythms; 1993; 8 Suppl():S73-81. PubMed ID: 8274765 [TBL] [Abstract][Full Text] [Related]
80. Differential modulation of clock gene expression in the suprachiasmatic nucleus, liver and heart of aged mice. Bonaconsa M; Malpeli G; Montaruli A; Carandente F; Grassi-Zucconi G; Bentivoglio M Exp Gerontol; 2014 Jul; 55():70-9. PubMed ID: 24674978 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]