These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 12150370)

  • 21. A meta-analysis of outcomes of hydration intervention on phonation threshold pressure.
    Leydon C; Wroblewski M; Eichorn N; Sivasankar M
    J Voice; 2010 Nov; 24(6):637-43. PubMed ID: 20359862
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Treatment of sulcus vocalis: auditory perceptual and acoustical analysis of the slicing mucosa surgical technique.
    Pontes P; Behlau M
    J Voice; 1993 Dec; 7(4):365-76. PubMed ID: 8293069
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How Stressful Is "Deep Bubbling"?
    Tyrmi J; Laukkanen AM
    J Voice; 2017 Mar; 31(2):262.e1-262.e6. PubMed ID: 27292094
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nebulized isotonic saline improves voice production in Sjögren's syndrome.
    Tanner K; Nissen SL; Merrill RM; Miner A; Channell RW; Miller KL; Elstad M; Kendall KA; Roy N
    Laryngoscope; 2015 Oct; 125(10):2333-40. PubMed ID: 25781583
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Vocal Changes and Laryngeal Modifications in the Elderly (Presbyphonia and Presbylarynx)].
    Angerstein W
    Laryngorhinootologie; 2018 Nov; 97(11):772-776. PubMed ID: 30406619
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Consequences of chronic nasal obstruction on the laryngeal mucosa and voice quality of 4- to 12-year-old children.
    de Lábio RB; Tavares EL; Alvarado RC; Martins RH
    J Voice; 2012 Jul; 26(4):488-92. PubMed ID: 21704494
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Effects of Expiratory Muscle Strength Training on Voice and Associated Factors in Medical Professionals With Voice Disorders.
    Tsai YC; Huang S; Che WC; Huang YC; Liou TH; Kuo YC
    J Voice; 2016 Nov; 30(6):759.e21-759.e27. PubMed ID: 26564581
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vocal tract and glottal function during and after vocal exercising with resonance tube and straw.
    Guzman M; Laukkanen AM; Krupa P; Horáček J; Švec JG; Geneid A
    J Voice; 2013 Jul; 27(4):523.e19-34. PubMed ID: 23683806
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Short-Term Effect of Two Semi-Occluded Vocal Tract Training Programs on the Vocal Quality of Future Occupational Voice Users: "Resonant Voice Training Using Nasal Consonants" Versus "Straw Phonation".
    Meerschman I; Van Lierde K; Peeters K; Meersman E; Claeys S; D'haeseleer E
    J Speech Lang Hear Res; 2017 Sep; 60(9):2519-2536. PubMed ID: 28837727
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vocal fold surface hydration: a review.
    Leydon C; Sivasankar M; Falciglia DL; Atkins C; Fisher KV
    J Voice; 2009 Nov; 23(6):658-65. PubMed ID: 19111440
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Resonance tube phonation in water: High-speed imaging, electroglottographic and oral pressure observations of vocal fold vibrations--a pilot study.
    Granqvist S; Simberg S; Hertegård S; Holmqvist S; Larsson H; Lindestad PÅ; Södersten M; Hammarberg B
    Logoped Phoniatr Vocol; 2015 Oct; 40(3):113-21. PubMed ID: 24865620
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of adjustment of expiratory effort in the control of vocal intensity: clinical assessment of phonatory function.
    Makiyama K; Yoshihashi H; Mogitate M; Kida A
    Otolaryngol Head Neck Surg; 2005 Apr; 132(4):641-6. PubMed ID: 15806061
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of Volume, Pitch, and Phonation Type on Oscillation Initiation and Termination Phases Investigated With High-speed Videoendoscopy.
    Kunduk M; Ikuma T; Blouin DC; McWhorter AJ
    J Voice; 2017 May; 31(3):313-322. PubMed ID: 27671752
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Viscoelastic properties of human aryepiglottic fold and ventricular fold tissues at phonatory frequencies.
    Kimura M; Chan RW
    Laryngoscope; 2018 Aug; 128(8):E296-E301. PubMed ID: 29243255
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vocal folds detect ionic perturbations on the luminal surface: an in vitro investigation.
    Sivasankar M; Fisher KV
    J Voice; 2008 Jul; 22(4):408-19. PubMed ID: 17280815
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Videostrobolaryngoscopy of mucus layer during vocal fold vibration in patients with laryngeal tension-fatigue syndrome.
    Hsiao TY; Liu CM; Lin KN
    Ann Otol Rhinol Laryngol; 2002 Jun; 111(6):537-41. PubMed ID: 12090710
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Artificially lengthened and constricted vocal tract in vocal training methods.
    Bele IV
    Logoped Phoniatr Vocol; 2005; 30(1):34-40. PubMed ID: 16040438
    [TBL] [Abstract][Full Text] [Related]  

  • 38. What happens during vocal warm-up?
    Elliot N; Sundberg J; Gramming P
    J Voice; 1995 Mar; 9(1):37-44. PubMed ID: 7757149
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reducing the negative vocal effects of superficial laryngeal dehydration with humidification.
    Levendoski EE; Sundarrajan A; Sivasankar MP
    Ann Otol Rhinol Laryngol; 2014 Jul; 123(7):475-81. PubMed ID: 24690983
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Computational Study of Vocal Fold Dehydration During Phonation.
    Wu L; Zhang Z
    IEEE Trans Biomed Eng; 2017 Dec; 64(12):2938-2948. PubMed ID: 28391188
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.