These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 12150564)

  • 1. Effect of molecular interactions on retention and selectivity in reversed-phase liquid chromatography.
    Szepesy L
    J Chromatogr A; 2002 Jun; 960(1-2):69-83. PubMed ID: 12150564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of reversed-phase columns using the linear free energy relationship. III. Effect of the organic modifier and the mobile phase composition.
    Sándi A; Nagy M; Szepesy L
    J Chromatogr A; 2000 Oct; 893(2):215-34. PubMed ID: 11073293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The chemical interpretation and practice of linear solvation energy relationships in chromatography.
    Vitha M; Carr PW
    J Chromatogr A; 2006 Sep; 1126(1-2):143-94. PubMed ID: 16889784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study of hydrocarbon, fluorocarbon, and aromatic bonded RP-HPLC stationary phases by linear solvation energy relationships.
    Reta M; Carr PW; Sadek PC; Rutan SC
    Anal Chem; 1999 Aug; 71(16):3484-96. PubMed ID: 10464478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study of the linear solvation energy relationship, linear solvent strength theory, and typical-conditions model for retention prediction in reversed-phase liquid chromatography.
    Wang A; Carr PW
    J Chromatogr A; 2002 Aug; 965(1-2):3-23. PubMed ID: 12236532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-variable retention modelling in reversed-phase high-performance liquid chromatography based on the solvation method: a comparison between curvilinear and artificial neural network regression.
    D'Archivio AA; Maggi MA; Ruggieri F
    Anal Chim Acta; 2011 Mar; 690(1):35-46. PubMed ID: 21414434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of retention in micellar liquid chromatography on a C8 column by the use of linear solvation energy relationships.
    García MA; Vitha MF; Sandquist J; Mulville K; Marina ML
    J Chromatogr A; 2001 May; 918(1):1-11. PubMed ID: 11403436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of internal standards in reversed-phase liquid chromatography. II. Selectivity optimization and internal standard prediction for the quantitation of estradiol and levonorgestrel in a transdermal drug delivery formulation based on the linear solvation energy relationships.
    Li J; Shah DS
    J Chromatogr A; 2002 Apr; 954(1-2):159-71. PubMed ID: 12058900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterisation of stationary phases in subcritical fluid chromatography with the solvation parameter model IV. Aromatic stationary phases.
    West C; Lesellier E
    J Chromatogr A; 2006 May; 1115(1-2):233-45. PubMed ID: 16529759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linear solvation energy relationships in micellar liquid chromatography and micellar electrokinetic capillary chromatography.
    Yang S; Khaledi MG
    J Chromatogr A; 1995 Feb; 692(1-2):301-10. PubMed ID: 7719457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of linear solvation energy relationships and principal component analysis methods for the prediction of the retention behaviour of E-resveratrol analogues with substituted silica hydride stationary phases.
    Danylec B; Kulsing C; Topete JC; Matyska MT; Pesek JJ; Boysen RI; Hearn MTW
    Anal Chim Acta; 2019 Dec; 1090():159-171. PubMed ID: 31655641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of modifiers in subcritical fluid chromatography on retention with porous graphitic carbon.
    West C; Lesellier E
    J Chromatogr A; 2005 Sep; 1087(1-2):64-76. PubMed ID: 16130699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selectivity of stationary phases in reversed-phase liquid chromatography based on the dispersion interactions.
    Turowski M; Morimoto T; Kimata K; Monde H; Ikegami T; Hosoya K; Tanaka N
    J Chromatogr A; 2001 Mar; 911(2):177-90. PubMed ID: 11293579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-column retention prediction in reversed-phase high-performance liquid chromatography by artificial neural network modelling.
    D'Archivio AA; Giannitto A; Maggi MA; Ruggieri F
    Anal Chim Acta; 2012 Mar; 717():52-60. PubMed ID: 22304815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of stationary phases in subcritical fluid chromatography by the solvation parameter model. I. Alkylsiloxane-bonded stationary phases.
    West C; Lesellier E
    J Chromatogr A; 2006 Mar; 1110(1-2):181-90. PubMed ID: 16487535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of internal standards in reversed-phase liquid chromatography. 1. Initial study on predicting internal standards for use with neutral samples based on linear solvation energy relationships.
    Li J
    J Chromatogr A; 2001 Aug; 927(1-2):19-30. PubMed ID: 11572388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterisation of stationary phases in subcritical fluid chromatography with the solvation parameter model. III. Polar stationary phases.
    West C; Lesellier E
    J Chromatogr A; 2006 Mar; 1110(1-2):200-13. PubMed ID: 16487536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of internal standards in reversed-phase liquid chromatography. III. Evaluation of an alternative solvation parameter model to correlate and predict the retention of ionizable compounds.
    Li J
    J Chromatogr A; 2002 Dec; 982(2):209-23. PubMed ID: 12489877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical selectivity in micellar electrokinetic chromatography: characterization of solute-micelle interactions for classification of surfactants.
    Yang S; Khaledi MG
    Anal Chem; 1995 Feb; 67(3):499-510. PubMed ID: 7893000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the retention mechanism on an octadecylsiloxane-bonded silica stationary phase (HyPURITY C18) in reversed-phase liquid chromatography.
    Poole CF; Kiridena W; DeKay C; Koziol WW; Rosencrans RD
    J Chromatogr A; 2006 May; 1115(1-2):133-41. PubMed ID: 16564531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.