BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 12150574)

  • 1. Molecular and genetic approaches to studying exercise performance and adaptation.
    Allen DL; Harrison BC; Leinwand LA
    Exerc Sport Sci Rev; 2002 Jul; 30(3):99-105. PubMed ID: 12150574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the response to endurance exercise using a systems biology approach: combining blood metabolomics, transcriptomics and miRNomics in horses.
    Mach N; Ramayo-Caldas Y; Clark A; Moroldo M; Robert C; Barrey E; López JM; Le Moyec L
    BMC Genomics; 2017 Feb; 18(1):187. PubMed ID: 28212624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of antioxidant supplements and endurance exercise on genes of the carbohydrate and lipid metabolism in skeletal muscle of mice.
    Meier P; Renga M; Hoppeler H; Baum O
    Cell Biochem Funct; 2013 Jan; 31(1):51-9. PubMed ID: 22865599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inter-individual variation in adaptations to endurance and resistance exercise training: genetic approaches towards understanding a complex phenotype.
    Vellers HL; Kleeberger SR; Lightfoot JT
    Mamm Genome; 2018 Feb; 29(1-2):48-62. PubMed ID: 29356897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding skeletal muscle adaptation to exercise training in humans: contributions from microarray studies.
    Mahoney DJ; Tarnopolsky MA
    Phys Med Rehabil Clin N Am; 2005 Nov; 16(4):859-73, vii. PubMed ID: 16214048
    [No Abstract]   [Full Text] [Related]  

  • 6. Inhibition of connexin 43 in cardiac muscle during intense physical exercise.
    Tiscornia GC; Moretta R; Argenziano MA; Amorena CE; Garcia Gras EA
    Scand J Med Sci Sports; 2014 Apr; 24(2):336-44. PubMed ID: 23206241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Animal models in the study of exercise-induced cardiac hypertrophy.
    Wang Y; Wisloff U; Kemi OJ
    Physiol Res; 2010; 59(5):633-644. PubMed ID: 20406038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cordyceps sinensis promotes exercise endurance capacity of rats by activating skeletal muscle metabolic regulators.
    Kumar R; Negi PS; Singh B; Ilavazhagan G; Bhargava K; Sethy NK
    J Ethnopharmacol; 2011 Jun; 136(1):260-6. PubMed ID: 21549819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation of upper airway muscles to chronic endurance exercise.
    Vincent HK; Shanely RA; Stewart DJ; Demirel HA; Hamilton KL; Ray AD; Michlin C; Farkas GA; Powers SK
    Am J Respir Crit Care Med; 2002 Aug; 166(3):287-93. PubMed ID: 12153959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PGC-1alpha is not mandatory for exercise- and training-induced adaptive gene responses in mouse skeletal muscle.
    Leick L; Wojtaszewski JF; Johansen ST; Kiilerich K; Comes G; Hellsten Y; Hidalgo J; Pilegaard H
    Am J Physiol Endocrinol Metab; 2008 Feb; 294(2):E463-74. PubMed ID: 18073319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetics of the adaptation to exercise.
    Angelopoulos TJ; Lowndes J; Seip RL
    World Rev Nutr Diet; 2011; 102():144-149. PubMed ID: 21865828
    [No Abstract]   [Full Text] [Related]  

  • 12. Molecular and cellular adaptation of muscle in response to physical training.
    Booth FW; Tseng BS; Flück M; Carson JA
    Acta Physiol Scand; 1998 Mar; 162(3):343-50. PubMed ID: 9578380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The molecular bases of training adaptation.
    Coffey VG; Hawley JA
    Sports Med; 2007; 37(9):737-63. PubMed ID: 17722947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Similar skeletal muscle angiogenic and mitochondrial signalling following 8 weeks of endurance exercise in mice: discontinuous versus continuous training.
    Malek MH; Hüttemann M; Lee I; Coburn JW
    Exp Physiol; 2013 Mar; 98(3):807-18. PubMed ID: 23180811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dysfunctional regulation of endothelial nitric oxide synthase (eNOS) expression in response to exercise in mice lacking one eNOS gene.
    Kojda G; Cheng YC; Burchfield J; Harrison DG
    Circulation; 2001 Jun; 103(23):2839-44. PubMed ID: 11401942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene expression profiling in blood cells of endurance horses completing competition or disqualified due to metabolic disorder.
    Barrey E; Mucher E; Robert C; Amiot F; Gidrol X
    Equine Vet J Suppl; 2006 Aug; (36):43-9. PubMed ID: 17402390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of transgenic models to understand effects of exercise on glucose metabolism.
    Hansen BF; Wojtaszewski JF
    Exerc Sport Sci Rev; 2002 Apr; 30(2):53-8. PubMed ID: 11991537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activating transcription factor 3 attenuates chemokine and cytokine expression in mouse skeletal muscle after exercise and facilitates molecular adaptation to endurance training.
    Fernández-Verdejo R; Vanwynsberghe AM; Essaghir A; Demoulin JB; Hai T; Deldicque L; Francaux M
    FASEB J; 2017 Feb; 31(2):840-851. PubMed ID: 27856557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adipose triacylglycerol lipase deletion alters whole body energy metabolism and impairs exercise performance in mice.
    Huijsman E; van de Par C; Economou C; van der Poel C; Lynch GS; Schoiswohl G; Haemmerle G; Zechner R; Watt MJ
    Am J Physiol Endocrinol Metab; 2009 Aug; 297(2):E505-13. PubMed ID: 19491295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of the pericardium in conditioning the effects of physical training.
    Shabetai R; Hammond HK; Lai C
    Chest; 1992 May; 101(5 Suppl):326S-329S. PubMed ID: 1576859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.