These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1800 related articles for article (PubMed ID: 12150925)
1. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Kim DH; Sarbassov DD; Ali SM; King JE; Latek RR; Erdjument-Bromage H; Tempst P; Sabatini DM Cell; 2002 Jul; 110(2):163-75. PubMed ID: 12150925 [TBL] [Abstract][Full Text] [Related]
2. Raptor and mTOR: subunits of a nutrient-sensitive complex. Kim DH; Sabatini DM Curr Top Microbiol Immunol; 2004; 279():259-70. PubMed ID: 14560962 [TBL] [Abstract][Full Text] [Related]
3. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Kim DH; Sarbassov DD; Ali SM; Latek RR; Guntur KV; Erdjument-Bromage H; Tempst P; Sabatini DM Mol Cell; 2003 Apr; 11(4):895-904. PubMed ID: 12718876 [TBL] [Abstract][Full Text] [Related]
5. Distinct signaling events downstream of mTOR cooperate to mediate the effects of amino acids and insulin on initiation factor 4E-binding proteins. Wang X; Beugnet A; Murakami M; Yamanaka S; Proud CG Mol Cell Biol; 2005 Apr; 25(7):2558-72. PubMed ID: 15767663 [TBL] [Abstract][Full Text] [Related]
6. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Sarbassov DD; Ali SM; Kim DH; Guertin DA; Latek RR; Erdjument-Bromage H; Tempst P; Sabatini DM Curr Biol; 2004 Jul; 14(14):1296-302. PubMed ID: 15268862 [TBL] [Abstract][Full Text] [Related]
7. Redox regulation of the nutrient-sensitive raptor-mTOR pathway and complex. Sarbassov DD; Sabatini DM J Biol Chem; 2005 Nov; 280(47):39505-9. PubMed ID: 16183647 [TBL] [Abstract][Full Text] [Related]
8. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Hara K; Maruki Y; Long X; Yoshino K; Oshiro N; Hidayat S; Tokunaga C; Avruch J; Yonezawa K Cell; 2002 Jul; 110(2):177-89. PubMed ID: 12150926 [TBL] [Abstract][Full Text] [Related]
9. Raptor, a binding partner of target of rapamycin. Yonezawa K; Tokunaga C; Oshiro N; Yoshino K Biochem Biophys Res Commun; 2004 Jan; 313(2):437-41. PubMed ID: 14684181 [TBL] [Abstract][Full Text] [Related]
10. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Fingar DC; Salama S; Tsou C; Harlow E; Blenis J Genes Dev; 2002 Jun; 16(12):1472-87. PubMed ID: 12080086 [TBL] [Abstract][Full Text] [Related]
11. Mammalian target of rapamycin pathway regulates insulin signaling via subcellular redistribution of insulin receptor substrate 1 and integrates nutritional signals and metabolic signals of insulin. Takano A; Usui I; Haruta T; Kawahara J; Uno T; Iwata M; Kobayashi M Mol Cell Biol; 2001 Aug; 21(15):5050-62. PubMed ID: 11438661 [TBL] [Abstract][Full Text] [Related]
12. Farnesylthiosalicylic acid inhibits mammalian target of rapamycin (mTOR) activity both in cells and in vitro by promoting dissociation of the mTOR-raptor complex. McMahon LP; Yue W; Santen RJ; Lawrence JC Mol Endocrinol; 2005 Jan; 19(1):175-83. PubMed ID: 15459249 [TBL] [Abstract][Full Text] [Related]
13. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Burnett PE; Barrow RK; Cohen NA; Snyder SH; Sabatini DM Proc Natl Acad Sci U S A; 1998 Feb; 95(4):1432-7. PubMed ID: 9465032 [TBL] [Abstract][Full Text] [Related]
14. Involvement of mTORC1 and mTORC2 in regulation of glioblastoma multiforme growth and motility. Gulati N; Karsy M; Albert L; Murali R; Jhanwar-Uniyal M Int J Oncol; 2009 Oct; 35(4):731-40. PubMed ID: 19724909 [TBL] [Abstract][Full Text] [Related]
15. Human cytomegalovirus infection alters the substrate specificities and rapamycin sensitivities of raptor- and rictor-containing complexes. Kudchodkar SB; Yu Y; Maguire TG; Alwine JC Proc Natl Acad Sci U S A; 2006 Sep; 103(38):14182-7. PubMed ID: 16959881 [TBL] [Abstract][Full Text] [Related]
16. The mammalian target of rapamycin regulates C2C12 myogenesis via a kinase-independent mechanism. Erbay E; Chen J J Biol Chem; 2001 Sep; 276(39):36079-82. PubMed ID: 11500483 [TBL] [Abstract][Full Text] [Related]
17. Two motifs in the translational repressor PHAS-I required for efficient phosphorylation by mammalian target of rapamycin and for recognition by raptor. Choi KM; McMahon LP; Lawrence JC J Biol Chem; 2003 May; 278(22):19667-73. PubMed ID: 12665511 [TBL] [Abstract][Full Text] [Related]
18. Enhanced interaction between Hsp90 and raptor regulates mTOR signaling upon T cell activation. Delgoffe GM; Kole TP; Cotter RJ; Powell JD Mol Immunol; 2009 Aug; 46(13):2694-8. PubMed ID: 19586661 [TBL] [Abstract][Full Text] [Related]
19. Interaction of RAFT1 with gephyrin required for rapamycin-sensitive signaling. Sabatini DM; Barrow RK; Blackshaw S; Burnett PE; Lai MM; Field ME; Bahr BA; Kirsch J; Betz H; Snyder SH Science; 1999 May; 284(5417):1161-4. PubMed ID: 10325225 [TBL] [Abstract][Full Text] [Related]
20. Expression of mTOR pathway proteins in human amniotic fluid stem cells. Siegel N; Valli A; Fuchs C; Rosner M; Hengstschläger M Int J Mol Med; 2009 Jun; 23(6):779-84. PubMed ID: 19424604 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]