These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 12151010)

  • 1. Mitochondria, Ca2+ and neurodegenerative disease.
    Krieger C; Duchen MR
    Eur J Pharmacol; 2002 Jul; 447(2-3):177-88. PubMed ID: 12151010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-methyl-D-aspartate receptor-mediated mitochondrial Ca(2+) overload in acute excitotoxic motor neuron death: a mechanism distinct from chronic neurotoxicity after Ca(2+) influx.
    Urushitani M; Nakamizo T; Inoue R; Sawada H; Kihara T; Honda K; Akaike A; Shimohama S
    J Neurosci Res; 2001 Mar; 63(5):377-87. PubMed ID: 11223912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal death signaling by beta-bungarotoxin through the activation of the N-methyl-D-aspartate (NMDA) receptor and L-type calcium channel.
    Tseng WP; Lin-Shiau SY
    Biochem Pharmacol; 2003 Jan; 65(1):131-42. PubMed ID: 12473387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases.
    Rego AC; Oliveira CR
    Neurochem Res; 2003 Oct; 28(10):1563-74. PubMed ID: 14570402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders.
    Sas K; Robotka H; Toldi J; Vécsei L
    J Neurol Sci; 2007 Jun; 257(1-2):221-39. PubMed ID: 17462670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ca(2+) signalling in mitochondria: mechanism and role in physiology and pathology.
    Brini M
    Cell Calcium; 2003; 34(4-5):399-405. PubMed ID: 12909084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of mitochondria in health and disease.
    Duchen MR
    Diabetes; 2004 Feb; 53 Suppl 1():S96-102. PubMed ID: 14749273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of Neuronal Protection against Excitotoxicity, Endoplasmic Reticulum Stress, and Mitochondrial Dysfunction in Stroke and Neurodegenerative Diseases.
    Prentice H; Modi JP; Wu JY
    Oxid Med Cell Longev; 2015; 2015():964518. PubMed ID: 26576229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial Ca(2+) in neurodegenerative disorders.
    Abeti R; Abramov AY
    Pharmacol Res; 2015 Sep; 99():377-81. PubMed ID: 26013908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preferential Zn2+ influx through Ca2+-permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production.
    Sensi SL; Yin HZ; Carriedo SG; Rao SS; Weiss JH
    Proc Natl Acad Sci U S A; 1999 Mar; 96(5):2414-9. PubMed ID: 10051656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondria and Ca(2+)in cell physiology and pathophysiology.
    Duchen MR
    Cell Calcium; 2000; 28(5-6):339-48. PubMed ID: 11115373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamate excitotoxicity and neuronal energy metabolism.
    Nicholls DG; Budd SL; Castilho RF; Ward MW
    Ann N Y Acad Sci; 1999; 893():1-12. PubMed ID: 10672225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scavenging ROS dramatically increase NMDA receptor whole-cell currents in painted turtle cortical neurons.
    Dukoff DJ; Hogg DW; Hawrysh PJ; Buck LT
    J Exp Biol; 2014 Sep; 217(Pt 18):3346-55. PubMed ID: 25063855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutamate excitotoxicity and Ca2+-regulation of respiration: Role of the Ca2+ activated mitochondrial transporters (CaMCs).
    Rueda CB; Llorente-Folch I; Traba J; Amigo I; Gonzalez-Sanchez P; Contreras L; Juaristi I; Martinez-Valero P; Pardo B; Del Arco A; Satrustegui J
    Biochim Biophys Acta; 2016 Aug; 1857(8):1158-1166. PubMed ID: 27060251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide inhibits capacitative Ca2+ entry by suppression of mitochondrial Ca2+ handling.
    Thyagarajan B; Malli R; Schmidt K; Graier WF; Groschner K
    Br J Pharmacol; 2002 Nov; 137(6):821-30. PubMed ID: 12411413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial dysfunction in human pathologies.
    Monsalve M; Borniquel S; Valle I; Lamas S
    Front Biosci; 2007 Jan; 12():1131-53. PubMed ID: 17127367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis.
    Hajnóczky G; Csordás G; Das S; Garcia-Perez C; Saotome M; Sinha Roy S; Yi M
    Cell Calcium; 2006; 40(5-6):553-60. PubMed ID: 17074387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases.
    Dong XX; Wang Y; Qin ZH
    Acta Pharmacol Sin; 2009 Apr; 30(4):379-87. PubMed ID: 19343058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 1-Methyl-4-phenylpyridinium induces autocrine excitotoxicity, protease activation, and neuronal apoptosis.
    Leist M; Volbracht C; Fava E; Nicotera P
    Mol Pharmacol; 1998 Nov; 54(5):789-801. PubMed ID: 9804614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondria in health and disease: perspectives on a new mitochondrial biology.
    Duchen MR
    Mol Aspects Med; 2004 Aug; 25(4):365-451. PubMed ID: 15302203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.