BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 12151268)

  • 1. Effect of ice fraction and dilution factor on the antifreeze activity in the hemolymph of the cerambycid beetle Rhagium inquisitor.
    Zachariassen KE; DeVries AL; Hunt B; Kristiansen E
    Cryobiology; 2002 Apr; 44(2):132-41. PubMed ID: 12151268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The inhibition of ice nucleators by insect antifreeze proteins is enhanced by glycerol and citrate.
    Duman JG
    J Comp Physiol B; 2002 Feb; 172(2):163-8. PubMed ID: 11916110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seasonal variations in antifreeze protein activity and haemolymph osmolality in larvae of the beetle Ragium mordax (Coleoptera: Cerambycidae).
    Wilkens C; Ramløv H
    Cryo Letters; 2008; 29(4):293-300. PubMed ID: 19137192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural characteristics of a novel antifreeze protein from the longhorn beetle Rhagium inquisitor.
    Kristiansen E; Ramløv H; Højrup P; Pedersen SA; Hagen L; Zachariassen KE
    Insect Biochem Mol Biol; 2011 Feb; 41(2):109-17. PubMed ID: 21078390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salt-induced enhancement of antifreeze protein activity: a salting-out effect.
    Kristiansen E; Pedersen SA; Zachariassen KE
    Cryobiology; 2008 Oct; 57(2):122-9. PubMed ID: 18703038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of hemolymph antifreeze proteins from larvae of the longhorn beetle Rhagium inquisitor (L.).
    Kristiansen E; Ramløv H; Hagen L; Pedersen SA; Andersen RA; Zachariassen KE
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Sep; 142(1):90-7. PubMed ID: 15993638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanism by which fish antifreeze proteins cause thermal hysteresis.
    Kristiansen E; Zachariassen KE
    Cryobiology; 2005 Dec; 51(3):262-80. PubMed ID: 16140290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of a beetle, Dendroides canadensis, antifreeze protein in Drosophila melanogaster.
    Nicodemus J; O'tousa JE; Duman JG
    J Insect Physiol; 2006 Aug; 52(8):888-96. PubMed ID: 16828791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative overwintering physiology of Alaska and Indiana populations of the beetle Cucujus clavipes (Fabricius): roles of antifreeze proteins, polyols, dehydration and diapause.
    Bennett VA; Sformo T; Walters K; Tøien Ø; Jeannet K; Hochstrasser R; Pan Q; Serianni AS; Barnes BM; Duman JG
    J Exp Biol; 2005 Dec; 208(Pt 23):4467-77. PubMed ID: 16339867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombinant Dendroides canadensis antifreeze proteins as potential ingredients in cryopreservation solutions.
    Halwani DO; Brockbank KG; Duman JG; Campbell LH
    Cryobiology; 2014 Jun; 68(3):411-8. PubMed ID: 24662031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antifreeze proteins of the beetle Dendroides canadensis enhance one another's activities.
    Wang L; Duman JG
    Biochemistry; 2005 Aug; 44(30):10305-12. PubMed ID: 16042407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Animal ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function.
    Duman JG
    J Exp Biol; 2015 Jun; 218(Pt 12):1846-55. PubMed ID: 26085662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting seasonal variation of antifreeze protein distribution in Rhagium mordax using immunofluorescence and high resolution microscopy.
    Buch JL; Ramløv H
    Cryobiology; 2017 Feb; 74():132-140. PubMed ID: 27847317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low thermodynamic but high kinetic stability of an antifreeze protein from Rhagium mordax.
    Friis DS; Johnsen JL; Kristiansen E; Westh P; Ramløv H
    Protein Sci; 2014 Jun; 23(6):760-8. PubMed ID: 24652821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antifreeze proteins govern the precipitation of trehalose in a freezing-avoiding insect at low temperature.
    Wen X; Wang S; Duman JG; Arifin JF; Juwita V; Goddard WA; Rios A; Liu F; Kim SK; Abrol R; DeVries AL; Henling LM
    Proc Natl Acad Sci U S A; 2016 Jun; 113(24):6683-8. PubMed ID: 27226297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of Hyperactive Antifreeze Protein from Phylogenetically Distant Beetles Questions Its Evolutionary Origin.
    Arai T; Yamauchi A; Miura A; Kondo H; Nishimiya Y; Sasaki YC; Tsuda S
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33807342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antifreeze activity enhancement by site directed mutagenesis on an antifreeze protein from the beetle Rhagium mordax.
    Friis DS; Kristiansen E; von Solms N; Ramløv H
    FEBS Lett; 2014 May; 588(9):1767-72. PubMed ID: 24681101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential expression of two antifreeze proteins in the desert beetle Anatolica polita (Coleoptera: Tenebriondae): seasonal variation and environmental effects.
    Ma J; Wang J; Mao XF; Wang Y
    Cryo Letters; 2012; 33(5):337-48. PubMed ID: 23224367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The antifreeze potential of the spruce budworm thermal hysteresis protein.
    Tyshenko MG; Doucet D; Davies PL; Walker VK
    Nat Biotechnol; 1997 Sep; 15(9):887-90. PubMed ID: 9306405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A thaumatin-like protein from larvae of the beetle Dendroides canadensis enhances the activity of antifreeze proteins.
    Wang L; Duman JG
    Biochemistry; 2006 Jan; 45(4):1278-84. PubMed ID: 16430224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.