BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 12151532)

  • 1. Brain factor-1 controls the proliferation and differentiation of neocortical progenitor cells through independent mechanisms.
    Hanashima C; Shen L; Li SC; Lai E
    J Neurosci; 2002 Aug; 22(15):6526-36. PubMed ID: 12151532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual role of brain factor-1 in regulating growth and patterning of the cerebral hemispheres.
    Dou CL; Li S; Lai E
    Cereb Cortex; 1999 Sep; 9(6):543-50. PubMed ID: 10498272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Winged helix transcription factor BF-1 is essential for the development of the cerebral hemispheres.
    Xuan S; Baptista CA; Balas G; Tao W; Soares VC; Lai E
    Neuron; 1995 Jun; 14(6):1141-52. PubMed ID: 7605629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Foxg1 is required for specification of ventral telencephalon and region-specific regulation of dorsal telencephalic precursor proliferation and apoptosis.
    Martynoga B; Morrison H; Price DJ; Mason JO
    Dev Biol; 2005 Jul; 283(1):113-27. PubMed ID: 15893304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abnormal positioning of diencephalic cell types in neocortical tissue in the dorsal telencephalon of mice lacking functional Gli3.
    Fotaki V; Yu T; Zaki PA; Mason JO; Price DJ
    J Neurosci; 2006 Sep; 26(36):9282-92. PubMed ID: 16957084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BMP signaling is required locally to pattern the dorsal telencephalic midline.
    Hébert JM; Mishina Y; McConnell SK
    Neuron; 2002 Sep; 35(6):1029-41. PubMed ID: 12354394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dorsal-ventral patterning defects in the eye of BF-1-deficient mice associated with a restricted loss of shh expression.
    Huh S; Hatini V; Marcus RC; Li SC; Lai E
    Dev Biol; 1999 Jul; 211(1):53-63. PubMed ID: 10373304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role for Runx1 in the proliferation and neuronal differentiation of selected progenitor cells in the mammalian nervous system.
    Theriault FM; Nuthall HN; Dong Z; Lo R; Barnabe-Heider F; Miller FD; Stifani S
    J Neurosci; 2005 Feb; 25(8):2050-61. PubMed ID: 15728845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ectopic expression of nolz-1 in neural progenitors promotes cell cycle exit/premature neuronal differentiation accompanying with abnormal apoptosis in the developing mouse telencephalon.
    Chang SL; Chen SY; Huang HH; Ko HA; Liu PT; Liu YC; Chen PH; Liu FC
    PLoS One; 2013; 8(9):e74975. PubMed ID: 24073229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sonic hedgehog and bone morphogenetic protein regulate interneuron development from dorsal telencephalic progenitors in vitro.
    Gulacsi A; Lillien L
    J Neurosci; 2003 Oct; 23(30):9862-72. PubMed ID: 14586015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A role for sustained MAPK activity in the mouse ventral telencephalon.
    Talley MJ; Nardini D; Qin S; Prada CE; Ehrman LA; Waclaw RR
    Dev Biol; 2021 Aug; 476():137-147. PubMed ID: 33775695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hedgehog-GLI signaling regulates the behavior of cells with stem cell properties in the developing neocortex.
    Palma V; Ruiz i Altaba A
    Development; 2004 Jan; 131(2):337-45. PubMed ID: 14681189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perlecan controls neurogenesis in the developing telencephalon.
    Girós A; Morante J; Gil-Sanz C; Fairén A; Costell M
    BMC Dev Biol; 2007 Apr; 7():29. PubMed ID: 17411441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterogeneity and Fgf dependence of adult neural progenitors in the zebrafish telencephalon.
    Ganz J; Kaslin J; Hochmann S; Freudenreich D; Brand M
    Glia; 2010 Aug; 58(11):1345-63. PubMed ID: 20607866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early neuronal and glial determination from mouse E10.5 telencephalon embryonic stem cells: an in vitro study.
    Khelfaoui M; Guimiot F; Simonneau M
    Neuroreport; 2002 Jul; 13(9):1209-14. PubMed ID: 12151771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneity in progenitor cell subtypes in the ventricular zone of the zebrafish adult telencephalon.
    März M; Chapouton P; Diotel N; Vaillant C; Hesl B; Takamiya M; Lam CS; Kah O; Bally-Cuif L; Strähle U
    Glia; 2010 May; 58(7):870-88. PubMed ID: 20155821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Foxg1 suppresses early cortical cell fate.
    Hanashima C; Li SC; Shen L; Lai E; Fishell G
    Science; 2004 Jan; 303(5654):56-9. PubMed ID: 14704420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The progenitor cells of the embryonic telencephalon and the neonatal anterior subventricular zone differentially regulate their cell cycle.
    Luskin MB; Coskun V
    Chem Senses; 2002 Jul; 27(6):577-80. PubMed ID: 12142335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vascular Influence on Ventral Telencephalic Progenitors and Neocortical Interneuron Production.
    Tan X; Liu WA; Zhang XJ; Shi W; Ren SQ; Li Z; Brown KN; Shi SH
    Dev Cell; 2016 Mar; 36(6):624-38. PubMed ID: 27003936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal requirement for hedgehog signaling in ventral telencephalic patterning.
    Fuccillo M; Rallu M; McMahon AP; Fishell G
    Development; 2004 Oct; 131(20):5031-40. PubMed ID: 15371303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.