These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 12151562)

  • 1. The influence of somatosensory cortex on climbing fiber responses in the lateral hemispheres of the rat cerebellum after peripheral tactile stimulation.
    Brown IE; Bower JM
    J Neurosci; 2002 Aug; 22(15):6819-29. PubMed ID: 12151562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of climbing fibers in determining the spatial patterns of activation in the cerebellar cortex to peripheral stimulation: an optical imaging study.
    Hanson CL; Chen G; Ebner TJ
    Neuroscience; 2000; 96(2):317-31. PubMed ID: 10683572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Congruence of mossy fiber and climbing fiber tactile projections in the lateral hemispheres of the rat cerebellum.
    Brown IE; Bower JM
    J Comp Neurol; 2001 Jan; 429(1):59-70. PubMed ID: 11086289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of somatosensory cortex to responses in the rat cerebellar granule cell layer following peripheral tactile stimulation.
    Morissette J; Bower JM
    Exp Brain Res; 1996 May; 109(2):240-50. PubMed ID: 8738373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Responses to tactile stimulation in deep cerebellar nucleus neurons result from recurrent activation in multiple pathways.
    Rowland NC; Jaeger D
    J Neurophysiol; 2008 Feb; 99(2):704-17. PubMed ID: 18077662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transmission of Predictable Sensory Signals to the Cerebellum via Climbing Fiber Pathways Is Gated during Exploratory Behavior.
    Lawrenson CL; Watson TC; Apps R
    J Neurosci; 2016 Jul; 36(30):7841-51. PubMed ID: 27466330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence that climbing fibers control an intrinsic spike generator in cerebellar Purkinje cells.
    Cerminara NL; Rawson JA
    J Neurosci; 2004 May; 24(19):4510-7. PubMed ID: 15140921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of GABAergic inhibition alters subthreshold input in neurons in forepaw barrel subfield (FBS) in rat first somatosensory cortex (SI) after digit stimulation.
    Li CX; Callaway JC; Waters RS
    Exp Brain Res; 2002 Aug; 145(4):411-28. PubMed ID: 12172653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GABAergic and glutamatergic modulation of spontaneous and motor-cortex-evoked complex spike activity.
    Lang EJ
    J Neurophysiol; 2002 Apr; 87(4):1993-2008. PubMed ID: 11929918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in excitability of ascending and descending inputs to cerebellar climbing fibers during locomotion.
    Pardoe J; Edgley SA; Drew T; Apps R
    J Neurosci; 2004 Mar; 24(11):2656-66. PubMed ID: 15028758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precise spike timing of tactile-evoked cerebellar Golgi cell responses: a reflection of combined mossy fiber and parallel fiber activation?
    Vos BP; Volny-Luraghi A; Maex R; De Schutter E
    Prog Brain Res; 2000; 124():95-106. PubMed ID: 10943119
    [No Abstract]   [Full Text] [Related]  

  • 12. Feedback control of Purkinje cell activity by the cerebello-olivary pathway.
    Bengtsson F; Svensson P; Hesslow G
    Eur J Neurosci; 2004 Dec; 20(11):2999-3005. PubMed ID: 15579154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oscillatory entrainment of primary somatosensory cortex encodes visual control of tactile processing.
    Sieben K; Röder B; Hanganu-Opatz IL
    J Neurosci; 2013 Mar; 33(13):5736-49. PubMed ID: 23536087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vestibularly induced slow oscillations in climbing fiber responses of Purkinje cells in the cerebellar nodulus of the rabbit.
    Barmack NH; Shojaku H
    Neuroscience; 1992 Sep; 50(1):1-5. PubMed ID: 1407553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repetitive microstimulation in rat primary somatosensory cortex (SI) strengthens the connection between homotopic sites in the opposite SI and leads to expression of previously ineffective input from the ipsilateral forelimb.
    DeCosta-Fortune TM; Ramshur JT; Li CX; de Jongh Curry A; Pellicer-Morata V; Wang L; Waters RS
    Brain Res; 2020 Apr; 1732():146694. PubMed ID: 32017899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cortical and peripheral modification of cerebellar climbing fibre activity arising from cutaneous mechanoreceptors.
    Leicht R; Rowe MJ; Schmidt RF
    J Physiol; 1973 Feb; 228(3):619-35. PubMed ID: 4702149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophysiological analysis of the trigemino-tecto-olivo-cerebellar (crus II) projection in the rat.
    Akaike T
    Brain Res; 1988 Mar; 442(2):373-8. PubMed ID: 3370454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microlesions of the inferior olive reduce vestibular modulation of Purkinje cell complex and simple spikes in mouse cerebellum.
    Barmack NH; Yakhnitsa V
    J Neurosci; 2011 Jul; 31(27):9824-35. PubMed ID: 21734274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical resonance enhances the sensitivity of the vibrissa sensory system to near-threshold stimuli.
    Andermann ML; Moore CI
    Brain Res; 2008 Oct; 1235():74-81. PubMed ID: 18625209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organization of olivocerebellar activity in the absence of excitatory glutamatergic input.
    Lang EJ
    J Neurosci; 2001 Mar; 21(5):1663-75. PubMed ID: 11222657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.