These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 12152341)

  • 21. Genome-wide characterization and expression profiling of PDI family gene reveals function as abiotic and biotic stress tolerance in Chinese cabbage (Brassica rapa ssp. pekinensis).
    Kayum MA; Park JI; Nath UK; Saha G; Biswas MK; Kim HT; Nou IS
    BMC Genomics; 2017 Nov; 18(1):885. PubMed ID: 29145809
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance.
    Ali S; Ganai BA; Kamili AN; Bhat AA; Mir ZA; Bhat JA; Tyagi A; Islam ST; Mushtaq M; Yadav P; Rawat S; Grover A
    Microbiol Res; 2018; 212-213():29-37. PubMed ID: 29853166
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cereal cyst nematode resistance conferred by the Cre7 gene from Aegilops triuncialis and its relationship with Cre genes from Australian wheat cultivars.
    Montes MJ; Andrés MF; Sin E; López-Braña I; Martín-Sánchez JA; Romero MD; Delibes A
    Genome; 2008 May; 51(5):315-9. PubMed ID: 18438434
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expression of resistance to Blumeria graminis f.sp. tritici in 'Chinese Spring' wheat addition lines containing chromosomes from Hordeum vulgare and H. chilense.
    Rubiales D; Carver TW; Martín A
    Hereditas; 2001; 134(1):53-7. PubMed ID: 11525065
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plant hormone-mediated regulation of stress responses.
    Verma V; Ravindran P; Kumar PP
    BMC Plant Biol; 2016 Apr; 16():86. PubMed ID: 27079791
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Drought and salt tolerances in wild relatives for wheat and barley improvement.
    Nevo E; Chen G
    Plant Cell Environ; 2010 Apr; 33(4):670-85. PubMed ID: 20040064
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sequence tagged microsatellites for the Xgwm533 locus provide new diagnostic markers to select for the presence of stem rust resistance gene Sr2 in bread wheat ( Triticum aestivum L.).
    Hayden MJ; Kuchel H; Chalmers KJ
    Theor Appl Genet; 2004 Nov; 109(8):1641-7. PubMed ID: 15340687
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Production of low input and stress tolerant wheat germplasm through the use of biodiversity residing in the wild relatives.
    Farooq S; Azam F
    Hereditas; 2001; 135(2-3):211-5. PubMed ID: 12152337
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Common bean proteomics: Present status and future strategies.
    Zargar SM; Mahajan R; Nazir M; Nagar P; Kim ST; Rai V; Masi A; Ahmad SM; Shah RA; Ganai NA; Agrawal GK; Rakwal R
    J Proteomics; 2017 Oct; 169():239-248. PubMed ID: 28347863
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic evolution of resistance gene analogs in the orthologous genomic regions of powdery mildew resistance gene MlIW170 in Triticum dicoccoides and Aegilops tauschii.
    Liang Y; Zhang DY; Ouyang S; Xie J; Wu Q; Wang Z; Cui Y; Lu P; Zhang D; Liu ZJ; Zhu J; Chen YX; Zhang Y; Luo MC; Dvorak J; Huo N; Sun Q; Gu YQ; Liu Z
    Theor Appl Genet; 2015 Aug; 128(8):1617-29. PubMed ID: 25993896
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wheat Genetic Transformation Using Mature Embryos as Explants.
    Chauhan H; Khurana P
    Methods Mol Biol; 2017; 1679():153-167. PubMed ID: 28913800
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rice functional genomics research: progress and implications for crop genetic improvement.
    Jiang Y; Cai Z; Xie W; Long T; Yu H; Zhang Q
    Biotechnol Adv; 2012; 30(5):1059-70. PubMed ID: 21888963
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Legume biology: the basis for crop improvement.
    Varshney RK; Kudapa H
    Funct Plant Biol; 2013 Dec; 40(12):v-viii. PubMed ID: 32481187
    [TBL] [Abstract][Full Text] [Related]  

  • 34. What Will Be the Benefits of Biotech Wheat for European Agriculture?
    Ricroch AE
    Methods Mol Biol; 2017; 1679():25-35. PubMed ID: 28913792
    [TBL] [Abstract][Full Text] [Related]  

  • 35. miRNAs: Major modulators for crop growth and development under abiotic stresses.
    Noman A; Fahad S; Aqeel M; Ali U; Amanullah ; Anwar S; Baloch SK; Zainab M
    Biotechnol Lett; 2017 May; 39(5):685-700. PubMed ID: 28238061
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of transgenic plants in agriculture and biopharming.
    Ahmad P; Ashraf M; Younis M; Hu X; Kumar A; Akram NA; Al-Qurainy F
    Biotechnol Adv; 2012; 30(3):524-40. PubMed ID: 21959304
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of microRNAs in biotic and abiotic stress responses in crop plants.
    Kumar R
    Appl Biochem Biotechnol; 2014 Sep; 174(1):93-115. PubMed ID: 24869742
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [A microsatellite marker linked to the stripe rust resistance gene YrV23 in the wheat variety Vilmorin23].
    Wang YB; Xu SC; Xu Z; Liu TG; Lin RM
    Yi Chuan; 2006 Mar; 28(3):306-10. PubMed ID: 16551597
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mapping of a major stripe rust resistance gene in Chinese native wheat variety Chike using microsatellite markers.
    Liu F; Niu Y; Deng H; Tan G
    J Genet Genomics; 2007 Dec; 34(12):1123-30. PubMed ID: 18155625
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects.
    Etesami H; Maheshwari DK
    Ecotoxicol Environ Saf; 2018 Jul; 156():225-246. PubMed ID: 29554608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.