These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 12152342)

  • 1. Cross-species amplification of the Hordeum chilense genome using barley sequence-tagged-sites (STSs).
    Hernández P; Dorado G; Martín A
    Hereditas; 2001; 135(2-3):243-6. PubMed ID: 12152342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utility of barley and wheat simple sequence repeat (SSR) markers for genetic analysis of Hordeum chilense and tritordeum.
    Hernández P; Laurie DA; Martín A; Snape JW
    Theor Appl Genet; 2002 Mar; 104(4):735-739. PubMed ID: 12582681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transferability and polymorphism of barley EST-SSR markers used for phylogenetic analysis in Hordeum chilense.
    Castillo A; Budak H; Varshney RK; Dorado G; Graner A; Hernandez P
    BMC Plant Biol; 2008 Sep; 8():97. PubMed ID: 18822176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of cost-effective Hordeum chilense DNA markers: molecular aids for marker-assisted cereal breeding.
    Hernández P; Dorado G; Ramírez MC; Laurie DA; Snape JW; Martín A
    Hereditas; 2003; 138(1):54-8. PubMed ID: 12830985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid verification of wheat-Hordeum introgressions by direct staining of SCAR, STS, and SSR amplicons.
    Hernández P; Dorado G; Cabrera A; Laurie DA; Snape JW; Martín A
    Genome; 2002 Feb; 45(1):198-203. PubMed ID: 11908662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prospects for exploitation of disease resistance from Hordeum chilense in cultivated cereals.
    Rubiales D; Niks RE; Carver TL; Ballesteros J; Martín A
    Hereditas; 2001; 135(2-3):161-9. PubMed ID: 12152329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic structure and ecogeographical adaptation in wild barley (Hordeum chilense Roemer et Schultes) as revealed by microsatellite markers.
    Castillo A; Dorado G; Feuillet C; Sourdille P; Hernandez P
    BMC Plant Biol; 2010 Nov; 10():266. PubMed ID: 21118494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hordeum chilense genome, a useful tool to investigate the endosperm yellow pigment content in the Triticeae.
    Rodríguez-Suárez C; Atienza SG
    BMC Plant Biol; 2012 Nov; 12():200. PubMed ID: 23122232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of wild barley (Hordeum chilense)-derived DArT markers and their use into genetic and physical mapping.
    Rodríguez-Suárez C; Giménez MJ; Gutiérrez N; Avila CM; Machado A; Huttner E; Ramírez MC; Martín AC; Castillo A; Kilian A; Martín A; Atienza SG
    Theor Appl Genet; 2012 Mar; 124(4):713-22. PubMed ID: 22048641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic differentiation of Hordeum chilense from H. vulgare as revealed by repetitive and EST sequences.
    Hagras AA; Kishii M; Tanaka H; Sato K; Tsujimoto H
    Genes Genet Syst; 2005 Jun; 80(3):147-59. PubMed ID: 16172528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of oat-based markers from barley and wheat microsatellites.
    Oliver RE; Obert DE; Hu G; Bonman JM; O'Leary-Jepsen E; Jackson EW
    Genome; 2010 Jun; 53(6):458-71. PubMed ID: 20555435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AFLP targeting of the 1-cM region conferring the vrs1 gene for six-rowed spike in barley, Hordeum vulgare L.
    He C; Sayed-Tabatabaei BE; Komatsuda T
    Genome; 2004 Dec; 47(6):1122-9. PubMed ID: 15644970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytogenetics of Hordeum chilense: current status and considerations with reference to breeding.
    Martín A; Cabrera A
    Cytogenet Genome Res; 2005; 109(1-3):378-84. PubMed ID: 15753600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence haplotypes revealed by sequence-tagged site fine mapping of the Ror1 gene in the centromeric region of barley chromosome 1H.
    Collins NC; Lahaye T; Peterhänsel C; Freialdenhoven A; Corbitt M; Schulze-Lefert P
    Plant Physiol; 2001 Mar; 125(3):1236-47. PubMed ID: 11244105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of barley genome segments introgressed into wheat using PCR markers.
    Sherman JD; Smith LY; Blake TK; Talbert LE
    Genome; 2001 Feb; 44(1):38-44. PubMed ID: 11269354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput genotyping of wheat-barley amphiploids utilising diversity array technology (DArT).
    Castillo A; Ramírez MC; Martín AC; Kilian A; Martín A; Atienza SG
    BMC Plant Biol; 2013 Jun; 13():87. PubMed ID: 23725040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and characterization of a gamma-3 hordein mRNA (cDNA) from Hordeum chilense (Roem. et Schult.).
    Pistón F; Dorado G; Martín A; Barro F
    Theor Appl Genet; 2004 May; 108(7):1359-65. PubMed ID: 14747917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative FISH mapping of two highly repetitive DNA sequences in Hordeum chilense (Roem. et Schult.).
    Marín S; Martín A; Barro F
    Genome; 2008 Aug; 51(8):580-8. PubMed ID: 18650948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of intergenomic translocations involving wheat, Hordeum vulgare and Hordeum chilense chromosomes by FISH.
    Prieto P; Ramírez MC; Ballesteros J; Cabrera A
    Hereditas; 2001; 135(2-3):171-4. PubMed ID: 12152330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and comparison of individual chromosomes of three accessions of Hordeum chilense, Hordeum vulgare, and Triticum aestivum by FISH.
    Rey MD; Moore G; Martín AC
    Genome; 2018 Jun; 61(6):387-396. PubMed ID: 29544080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.