These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 12152713)

  • 1. Accurate computation of the Briot-Sellmeier and Briot-Cauchy chromatic dispersion coefficients from the transmittance spectrum of thin films of arbitrary absorptance.
    Gauvin S
    J Opt Soc Am A Opt Image Sci Vis; 2002 Aug; 19(8):1712-20. PubMed ID: 12152713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate determination of solid and liquid dispersions from spectra channeled with the Fabry-Perot interferometer.
    Khashan MA; Nassif AY
    Appl Opt; 1997 Sep; 36(27):6843-51. PubMed ID: 18259554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of thickness influence on refractive index and absorption coefficient of zinc selenide thin films.
    Georgescu G; Petris A
    Opt Express; 2019 Nov; 27(24):34803-34823. PubMed ID: 31878662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Refractive index of thin films of SiO2, ZrO2, and HfO2 as a function of the films' mass density.
    Jerman M; Qiao Z; Mergel D
    Appl Opt; 2005 May; 44(15):3006-12. PubMed ID: 15929291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical characterization of dielectric and semiconductor thin films by use of transmission data.
    Cisneros JI
    Appl Opt; 1998 Aug; 37(22):5262-70. PubMed ID: 18286005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the fundamental absorption and optical bandgap of dielectric thin films from single optical transmittance measurements.
    Tejada A; Montañez L; Torres C; Llontop P; Flores L; De Zela F; Winnacker A; Guerra JA
    Appl Opt; 2019 Dec; 58(35):9585-9594. PubMed ID: 31873557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modified channeled spectrum for fast measurement of thin films.
    Dyankov G
    Appl Opt; 2008 Feb; 47(4):536-40. PubMed ID: 18239713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increasing the Accuracy of the Characterization of a Thin Semiconductor or Dielectric Film on a Substrate from Only One Quasi-Normal Incidence UV/Vis/NIR Reflectance Spectrum of the Sample.
    Minkov D; Angelov G; Marquez E; Radonov R; Rusev R; Nikolov D; Ruano S
    Nanomaterials (Basel); 2023 Aug; 13(17):. PubMed ID: 37686915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ordinary and Extraordinary Complex Refractive Indices Extraction of a Mylar Film by Transmission Spectrophotometry.
    Makhlouka Y; Sanaâ F; Gharbia M
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35566973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Further Increasing the Accuracy of Characterization of a Thin Dielectric or Semiconductor Film on a Substrate from Its Interference Transmittance Spectrum.
    Minkov D; Marquez E; Angelov G; Gavrilov G; Ruano S; Saugar E
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Preparation and spectral characterization of CdS(y)Te(1-y) thin films].
    Li W; Feng LH; Wu LL; Zhang JQ; Li B; Lei Z; Cai YP; Zheng JG; Cai W; Zhang DM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Mar; 28(3):499-502. PubMed ID: 18536398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Determination of optical parameters in thin films by transmittance spectra].
    Wang K; Jia HZ; Xia GZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Nov; 28(11):2713-6. PubMed ID: 19271525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid Dispersion Model Characterization of PAZO Azopolymer Thin Films over the Entire Transmittance Spectrum Measured in the UV/VIS/NIR Spectral Region.
    Minkov D; Nedelchev L; Angelov G; Marquez E; Blagoeva B; Mateev G; Nazarova D
    Materials (Basel); 2022 Dec; 15(23):. PubMed ID: 36500112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic determination of the optical constants of inhomogeneous thin films.
    Borgogno JP; Lazarides B; Pelletier E
    Appl Opt; 1982 Nov; 21(22):4020-9. PubMed ID: 20401002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Refractive indices of infrared-transmitting substrate materials calculated using standard spectrophotometer transmittance curves.
    Carlon HR
    Appl Opt; 1969 Jun; 8(6):1179-82. PubMed ID: 20072397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extension of the Swanepoel method for obtaining the refractive index of chalcogenide thin films accurately at an arbitrary wavenumber.
    Jin Y; Song B; Lin C; Zhang P; Dai S; Xu T; Nie Q
    Opt Express; 2017 Dec; 25(25):31273-31280. PubMed ID: 29245804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical measurement of the refractive index, layer thickness, and volume changes of thin films.
    Holtslag AH; Scholte PM
    Appl Opt; 1989 Dec; 28(23):5095-104. PubMed ID: 20556006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of higher order chromatic dispersion in a photonic bandgap fiber: comparative study of spectral interferometric methods.
    Grósz T; Kovács AP; Kiss M; Szipőcs R
    Appl Opt; 2014 Mar; 53(9):1929-37. PubMed ID: 24663472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhomogeneity in films: limitation of the accuracy of optical monitoring of thin films.
    Borgogno JP; Bousquet P; Flory F; Lazarides B; Pelletier E; Roche P
    Appl Opt; 1981 Jan; 20(1):90-4. PubMed ID: 20309071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of refractive index and film thickness from interference fringes.
    Harrick NJ
    Appl Opt; 1971 Oct; 10(10):2344-9. PubMed ID: 20111327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.