These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 12152745)

  • 21. Biosorption of Cr (VI) from aqueous solutions by biomass of Agaricus bisporus.
    Ertugay N; Bayhan YK
    J Hazard Mater; 2008 Jun; 154(1-3):432-9. PubMed ID: 18078714
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic and thermodynamic studies of the biosorption of Cr(VI) by Pinus sylvestris Linn.
    Ucun H; Bayhan YK; Kaya Y
    J Hazard Mater; 2008 May; 153(1-2):52-9. PubMed ID: 17875365
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biosorption of heavy metals from industrial waste water by Geobacillus thermodenitrificans.
    Chatterjee SK; Bhattacharjee I; Chandra G
    J Hazard Mater; 2010 Mar; 175(1-3):117-25. PubMed ID: 19864059
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Statistical design of experiments as a tool for optimizing the batch conditions to Cr(VI) biosorption on Araucaria angustifolia wastes.
    Brasil JL; Ev RR; Milcharek CD; Martins LC; Pavan FA; dos Santos AA; Dias SL; Dupont J; Zapata Noreña CP; Lima EC
    J Hazard Mater; 2006 May; 133(1-3):143-53. PubMed ID: 16297543
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biosorption of Cr(VI) by immobilized biomass of two indigenous strains of cyanobacteria isolated from metal contaminated soil.
    Anjana K; Kaushik A; Kiran B; Nisha R
    J Hazard Mater; 2007 Sep; 148(1-2):383-6. PubMed ID: 17403568
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biosorption of chromium by live and dead cells of Bacillus nitratireducens isolated from textile effluent.
    Imron MF; Setiawan W; Putranto TWC; Abdullah SRS; Kurniawan SB
    Chemosphere; 2024 Jul; 359():142389. PubMed ID: 38777191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biosorption of Cr(VI) ions from aqueous solutions by a newly isolated Bosea sp. strain Zer-1 from soil samples of a refuse processing plant.
    Zhang H; Liu L; Chang Q; Wang H; Yang K
    Can J Microbiol; 2015 Jun; 61(6):399-408. PubMed ID: 25941999
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biosorption properties of hexavalent chromium on to biomass of tobacco-leaf residues.
    Chen Y; Tang G; Yu QJ; Zhang T; Chen Y; Gu T
    Environ Technol; 2009 Sep; 30(10):1003-10. PubMed ID: 19886424
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of a simple bacterial consortium for effective treatment of wastewaters with reactive dyes and Cr(VI).
    Kiliç NK; Nielsen JL; Yüce M; Dönmez G
    Chemosphere; 2007 Mar; 67(4):826-31. PubMed ID: 17217991
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneous reduction of Cr(VI) and oxidation of As(III) by Bacillus firmus TE7 isolated from tannery effluent.
    Bachate SP; Nandre VS; Ghatpande NS; Kodam KM
    Chemosphere; 2013 Feb; 90(8):2273-8. PubMed ID: 23182111
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of pH on Cr-Fe interaction during Cr(VI) removal by metallic iron.
    Singh IB; Singh DR
    Environ Technol; 2003 Aug; 24(8):1041-7. PubMed ID: 14509396
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of kinetic parameters in the biosorption of Cr (VI) on immobilized Bacillus cereus M(1)(16) in a continuous packed bed column reactor.
    Maiti SK; Bera D; Chattopadhyay P; Ray L
    Appl Biochem Biotechnol; 2009 Nov; 159(2):488-504. PubMed ID: 19333567
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strategies for chromium bioremediation of tannery effluent.
    Garg SK; Tripathi M; Srinath T
    Rev Environ Contam Toxicol; 2012; 217():75-140. PubMed ID: 22350558
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chromium(VI) bioaccumulation capacities of adapted mixed cultures isolated from industrial saline wastewaters.
    Koçberber N; Dönmez G
    Bioresour Technol; 2007 Aug; 98(11):2178-83. PubMed ID: 17049232
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger.
    Park D; Yun YS; Jo JH; Park JM
    Water Res; 2005 Feb; 39(4):533-40. PubMed ID: 15707625
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH.
    Gheju M; Iovi A; Balcu I
    J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adsorption studies of chromium (VI) on activated carbon derived from Sorghum vulgare (dried stem of Jowar).
    Mise SR; Rajamanya VS
    Indian J Environ Health; 2003 Jan; 45(1):49-58. PubMed ID: 14723283
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of Cr(VI) removal from aqueous solutions by a surplus agricultural waste--rice straw.
    Gao H; Liu Y; Zeng G; Xu W; Li T; Xia W
    J Hazard Mater; 2008 Jan; 150(2):446-52. PubMed ID: 17574737
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro microcosm of co-cultured bacteria for the removal of hexavalent Cr and tannic acid: A mechanistic approach to study the impact of operational parameters.
    Chaudhary P; Beniwal V; Umar A; Kumar R; Sharma P; Kumar A; Al-Hadeethi Y; Chhokar V
    Ecotoxicol Environ Saf; 2021 Jan; 208():111484. PubMed ID: 33120265
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioaccumulation and biosorption of chromium by Aspergillus niger MTCC 2594.
    Sandana Mala JG; Unni Nair B; Puvanakrishnan R
    J Gen Appl Microbiol; 2006 Jun; 52(3):179-86. PubMed ID: 16960334
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.