These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 12152756)

  • 21. Model for simulating the effects of management practices on pesticide concentrations in groundwater.
    Dean JD; Voss KA; al-Hassan S
    Schriftenr Ver Wasser Boden Lufthyg; 1989; 79():527-80; discussion 581-6. PubMed ID: 2756386
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Propagation of uncertainties in soil and pesticide properties to pesticide leaching.
    van den Berg F; Tiktak A; Heuvelink GB; Burgers SL; Brus DJ; de Vries F; Stolte J; Kroes JG
    J Environ Qual; 2012; 41(1):253-61. PubMed ID: 22218193
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A multimedia environmental model of chemical distribution: fate, transport, and uncertainty analysis.
    Luo Y; Yang X
    Chemosphere; 2007 Jan; 66(8):1396-407. PubMed ID: 17095045
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A globally applicable location-specific screening model for assessing the relative risk of pesticide leaching.
    Whelan MJ; Davenport EJ; Smith BG
    Sci Total Environ; 2007 May; 377(2-3):192-206. PubMed ID: 17391735
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of input data uncertainty on environmental exposure assessment models: A case study for electromagnetic field modelling from mobile phone base stations.
    Beekhuizen J; Heuvelink GB; Huss A; Bürgi A; Kromhout H; Vermeulen R
    Environ Res; 2014 Nov; 135():148-55. PubMed ID: 25262088
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of pesticide fate parameters and their uncertainty on the selection of 'worst-case' scenarios of pesticide leaching to groundwater.
    Vanderborght J; Tiktak A; Boesten JJ; Vereecken H
    Pest Manag Sci; 2011 Mar; 67(3):294-306. PubMed ID: 21308955
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transport of bromide and pesticides through an undisturbed soil column: a modeling study with global optimization analysis.
    Dusek J; Dohnal M; Snehota M; Sobotkova M; Ray C; Vogel T
    J Contam Hydrol; 2015; 175-176():1-16. PubMed ID: 25703186
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamic interactions between hydrogeological and exposure parameters in daily dose prediction under uncertainty and temporal variability.
    Kumar V; de Barros FP; Schuhmacher M; Fernàndez-Garcia D; Sanchez-Vila X
    J Hazard Mater; 2013 Dec; 263 Pt 1():197-206. PubMed ID: 24011618
    [TBL] [Abstract][Full Text] [Related]  

  • 29. FIFRA Subdivision F testing Guidelines: are these tests adequate to detect potential hormonal activity for crop protection chemicals? Federal Insecticide, Fungicide, and Rodenticide Act.
    Stevens JT; Tobia A; Lamb JC; Tellone C; O'Neal F
    J Toxicol Environ Health; 1997 Apr; 50(5):415-31. PubMed ID: 9140462
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exposure risk assessment and evaluation of the best management practice for controlling pesticide runoff from paddy fields. Part 2: model simulation for the herbicide pretilachlor.
    Phong TK; Vu SH; Ishihara S; Hiramatsu K; Watanabe H
    Pest Manag Sci; 2011 Jan; 67(1):70-6. PubMed ID: 20954170
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of different uncertainty techniques in urban stormwater quantity and quality modelling.
    Dotto CB; Mannina G; Kleidorfer M; Vezzaro L; Henrichs M; McCarthy DT; Freni G; Rauch W; Deletic A
    Water Res; 2012 May; 46(8):2545-58. PubMed ID: 22402270
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Model comparison for risk assessment: a case study of contaminated groundwater.
    Chen YC; Ma HW
    Chemosphere; 2006 May; 63(5):751-61. PubMed ID: 16213568
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monte-Carlo human health risk assessment of mercury emissions from a MSW gasification plant.
    Lonati G; Zanoni F
    Waste Manag; 2013 Feb; 33(2):347-55. PubMed ID: 23177017
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accounting for uncertainty in pedotransfer functions in vulnerability assessments of pesticide leaching to groundwater.
    Stenemo F; Jarvis N
    Pest Manag Sci; 2007 Sep; 63(9):867-75. PubMed ID: 17583910
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sensitivity analyses for four pesticide leaching models.
    Dubus IG; Brown CD; Beulke S
    Pest Manag Sci; 2003 Sep; 59(9):962-82. PubMed ID: 12974348
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of PRZM-3 to validate a laboratory to field degradation conceptual model.
    Jackson SH
    Pest Manag Sci; 2004 Jan; 60(1):8-16. PubMed ID: 14727736
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of simulated pesticide concentrations in surface drinking water with monitoring data: explanations for observed differences and proposals for a new regulatory modeling approach.
    Winchell MF; Snyder NJ
    J Agric Food Chem; 2014 Jan; 62(2):348-59. PubMed ID: 24328205
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluating and expressing the propagation of uncertainty in chemical fate and bioaccumulation models.
    MacLeod M; Fraser AJ; Mackay D
    Environ Toxicol Chem; 2002 Apr; 21(4):700-9. PubMed ID: 11951941
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Soil column leaching of pesticides.
    Katagi T
    Rev Environ Contam Toxicol; 2013; 221():1-105. PubMed ID: 23090630
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probabilistic risk-assessment model for birds exposed to granular pesticides.
    Moore DR; Fischer DL; Teed RS; Rodney SI
    Integr Environ Assess Manag; 2010 Apr; 6(2):260-72. PubMed ID: 20821688
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.