These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 12152941)

  • 1. Statistics of envelope of high-frequency ultrasonic backscatter from human skin in vivo.
    Raju BI; Srinivasan MA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Jul; 49(7):871-82. PubMed ID: 12152941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic tissue characterization using a generalized Nakagami model.
    Shankar PM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Nov; 48(6):1716-20. PubMed ID: 11800135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the envelope statistics of three-dimensional high-frequency ultrasound echo signals from dissected human lymph nodes.
    Bui TM; Coron A; Mamou J; Saegusa-Beecroft E; Yamaguchi T; Yanagihara E; Machi J; Bridal SL; Feleppa EJ
    Jpn J Appl Phys (2008); 2014; 53(7 Suppl):. PubMed ID: 25346951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-Rayleigh first-order statistics of ultrasonic backscatter from normal myocardium.
    Clifford L; Fitzgerald P; James D
    Ultrasound Med Biol; 1993; 19(6):487-95. PubMed ID: 8236590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-frequency ultrasonic attenuation and backscatter coefficients of in vivo normal human dermis and subcutaneous fat.
    Raju BI; Srinivasan MA
    Ultrasound Med Biol; 2001 Nov; 27(11):1543-56. PubMed ID: 11750754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-Rayleigh statistics of ultrasonic backscattered signals.
    Narayanan VM; Shankar PM; Reid JM
    IEEE Trans Ultrason Ferroelectr Freq Control; 1994; 41(6):845-52. PubMed ID: 18263274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative ultrasonic methods for characterization of skin lesions in vivo.
    Raju BI; Swindells KJ; Gonzalez S; Srinivasan MA
    Ultrasound Med Biol; 2003 Jun; 29(6):825-38. PubMed ID: 12837498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A compound scattering pdf for the ultrasonic echo envelope and its relationship to K and Nakagami distributions.
    Shankar PM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Mar; 50(3):339-43. PubMed ID: 12699168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Goodness-of-fit tests for the Compound Rayleigh distribution with application to real data.
    Badr MM
    Heliyon; 2019 Aug; 5(8):e02225. PubMed ID: 31517082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of Homodyned K Distribution Modeling Ultrasonic Speckles from Scatterers with Varying Spatial Organizations.
    Hu X; Zhang Y; Deng L; Cai G; Zhang Q; Zhou Y; Zhang K; Zhang J
    J Healthc Eng; 2017; 2017():8154780. PubMed ID: 29312656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparisons of the Rayleigh and K-distribution models using in vivo breast and liver tissue.
    Molthen RC; Shankar PM; Reid JM; Forsberg F; Halpern EJ; Piccoli CW; Goldberg BB
    Ultrasound Med Biol; 1998 Jan; 24(1):93-100. PubMed ID: 9483775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasonic backscatter and attenuation (11-27 MHz) variation with collagen fiber distribution in ex vivo human dermis.
    Bridal SL; Fournier C; Coron A; Leguerney I; Laugier P
    Ultrason Imaging; 2006 Jan; 28(1):23-40. PubMed ID: 16924880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasound echo envelope analysis using a homodyned K distribution signal model.
    Dutt V; Greenleaf JF
    Ultrason Imaging; 1994 Oct; 16(4):265-87. PubMed ID: 7785128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Harmonic amplitude distribution in a wideband ultrasonic wavefront after propagation through human abdominal wall and breast specimens.
    Liu DL; Waag RC
    J Acoust Soc Am; 1997 Feb; 101(2):1172-83. PubMed ID: 9035403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-frequency volume and boundary acoustic backscatter fluctuations in shallow water.
    Gallaudet TC; de Moustier CP
    J Acoust Soc Am; 2003 Aug; 114(2):707-25. PubMed ID: 12942954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling ultrasound echoes in skin tissues using symmetric α-stable processes.
    Pereyra M; Batatia H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jan; 59(1):60-72. PubMed ID: 22293736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of frequency diversity and Nakagami statistics in ultrasonic tissue characterization.
    Dumane VA; Shankar PM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Jul; 48(4):1139-46. PubMed ID: 11477773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasonic backscattering in tissue: characterization through Nakagami-generalized inverse Gaussian distribution.
    Agrawal R; Karmeshu
    Comput Biol Med; 2007 Feb; 37(2):166-72. PubMed ID: 16473344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliability of measurement of skin ultrasonic properties in vivo: a potential technique for assessing irradiated skin.
    Huang YP; Zheng YP; Leung SF; Mak AF
    Skin Res Technol; 2007 Feb; 13(1):55-61. PubMed ID: 17250533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring structural changes in cells with high-frequency ultrasound signal statistics.
    Tunis AS; Czarnota GJ; Giles A; Sherar MD; Hunt JW; Kolios MC
    Ultrasound Med Biol; 2005 Aug; 31(8):1041-9. PubMed ID: 16085095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.