BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 12153312)

  • 1. An integrated process for mammalian cell perfusion cultivation and product purification using a dynamic filter.
    Castilho LR; Anspach FB; Deckwer WD
    Biotechnol Prog; 2002; 18(4):776-81. PubMed ID: 12153312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled shear affinity filtration (CSAF): a new technology for integration of cell separation and protein isolation from mammalian cell cultures.
    Vogel JH; Anspach B; Kroner KH; Piret JM; Haynes CA
    Biotechnol Bioeng; 2002 Jun; 78(7):806-14. PubMed ID: 12001173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of a CHO cell culture process from perfusion to fed-batch technology without altering product quality.
    Meuwly F; Weber U; Ziegler T; Gervais A; Mastrangeli R; Crisci C; Rossi M; Bernard A; von Stockar U; Kadouri A
    J Biotechnol; 2006 May; 123(1):106-16. PubMed ID: 16324762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CFD-aided design of a dynamic filter for mammalian cell separation.
    Castilho LR; Anspach FB
    Biotechnol Bioeng; 2003 Sep; 83(5):514-24. PubMed ID: 12827693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of a production process in a membrane-aerated stirred tank and up to 1000-L airlift bioreactors using BHK-21 cells and chemically defined protein-free medium.
    Hesse F; Ebel M; Konisch N; Sterlinski R; Kessler W; Wagner R
    Biotechnol Prog; 2003; 19(3):833-43. PubMed ID: 12790647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic cell filter: a proven cell retention technology for perfusion of animal cell cultures.
    Shirgaonkar IZ; Lanthier S; Kamen A
    Biotechnol Adv; 2004 Jul; 22(6):433-44. PubMed ID: 15135491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel control scheme for inducing angiostatin-human IgG fusion protein production using recombinant CHO cells in a oscillating bioreactor.
    Wang IK; Hsieh SY; Chang KM; Wang YC; Chu A; Shaw SY; Ou JJ; Ho L
    J Biotechnol; 2006 Feb; 121(3):418-28. PubMed ID: 16162365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recombinant antibody production by perfusion cultures of rCHO cells in a depth filter perfusion system.
    Lee JC; Chang HN; Oh DJ
    Biotechnol Prog; 2005; 21(1):134-9. PubMed ID: 15903250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of a cell-once-through perfusion strategy for production of recombinant antibody from rCHO cells in a Centritech Lab II centrifuge system.
    Kim BJ; Chang HN; Oh DJ
    Biotechnol Prog; 2007; 23(5):1186-97. PubMed ID: 17691812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated continuous production of recombinant therapeutic proteins.
    Warikoo V; Godawat R; Brower K; Jain S; Cummings D; Simons E; Johnson T; Walther J; Yu M; Wright B; McLarty J; Karey KP; Hwang C; Zhou W; Riske F; Konstantinov K
    Biotechnol Bioeng; 2012 Dec; 109(12):3018-29. PubMed ID: 22729761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-line purification of monoclonal antibodies using an integrated stirred-tank reactor/expanded-bed adsorption system.
    Ohashi R; Otero JM; Chwistek A; Yamato I; Hamel JF
    Biotechnol Prog; 2002; 18(6):1292-300. PubMed ID: 12467465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perfusion culture of hybridoma cells for hyperproduction of IgG(2a) monoclonal antibody in a wave bioreactor-perfusion culture system.
    Tang YJ; Ohashi R; Hamel JF
    Biotechnol Prog; 2007; 23(1):255-64. PubMed ID: 17269696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new large-scale manufacturing platform for complex biopharmaceuticals.
    Vogel JH; Nguyen H; Giovannini R; Ignowski J; Garger S; Salgotra A; Tom J
    Biotechnol Bioeng; 2012 Dec; 109(12):3049-58. PubMed ID: 22688835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A perfusion culture system using a stirred ceramic membrane reactor for hyperproduction of IgG2a monoclonal antibody by hybridoma cells.
    Dong H; Tang YJ; Ohashi R; Hamel JF
    Biotechnol Prog; 2005; 21(1):140-7. PubMed ID: 15903251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel micro-bioreactor high throughput technology for cell culture process development: Reproducibility and scalability assessment of fed-batch CHO cultures.
    Amanullah A; Otero JM; Mikola M; Hsu A; Zhang J; Aunins J; Schreyer HB; Hope JA; Russo AP
    Biotechnol Bioeng; 2010 May; 106(1):57-67. PubMed ID: 20073088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane bioreactor separator system for integrated IgG fragmentation and Fab purification.
    Yu D; Ghosh R
    J Immunol Methods; 2010 Jul; 359(1-2):37-41. PubMed ID: 20594963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of an acoustic cell filter with a novel air-backflush system.
    Gorenflo VM; Angepat S; Bowen BD; Piret JM
    Biotechnol Prog; 2003; 19(1):30-6. PubMed ID: 12573003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioreactor systems for the production of biopharmaceuticals from animal cells.
    Warnock JN; Al-Rubeai M
    Biotechnol Appl Biochem; 2006 Jul; 45(Pt 1):1-12. PubMed ID: 16764553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An on-line method for the reduction of fouling of spin-filters for animal cell perfusion cultures.
    Vallez-Chetreanu F; Fraisse Ferreira LG; Rabe R; von Stockar U; Marison IW
    J Biotechnol; 2007 Jun; 130(3):265-73. PubMed ID: 17543407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.