BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 12153703)

  • 1. A rate equation model of stomatal responses to vapour pressure deficit and drought.
    Eamus D; Shanahan ST
    BMC Ecol; 2002 Aug; 2():8. PubMed ID: 12153703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing model predictions and experimental data for the response of stomatal conductance and guard cell turgor to manipulations of cuticular conductance, leaf-to-air vapour pressure difference and temperature: feedback mechanisms are able to account for all observations.
    Eamus D; Taylor DT; Macinnis-Ng CM; Shanahan S; De Silva L
    Plant Cell Environ; 2008 Mar; 31(3):269-77. PubMed ID: 18088329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized hydromechanical model for stomatal responses to hydraulic perturbations.
    Kwon HW; Choi MY
    J Theor Biol; 2014 Jan; 340():119-30. PubMed ID: 24060618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water relations in tree physiology: where to from here?
    Landsberg J; Waring R; Ryan M
    Tree Physiol; 2017 Jan; 37(1):18-32. PubMed ID: 28173481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of vapour pressure deficit on stomatal conductance, sap pH and leaf-specific hydraulic conductance in Eucalyptus globulus clones grown under two watering regimes.
    Hernandez MJ; Montes F; Ruiz F; Lopez G; Pita P
    Ann Bot; 2016 May; 117(6):1063-71. PubMed ID: 27052343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stomatal action directly feeds back on leaf turgor: new insights into the regulation of the plant water status from non-invasive pressure probe measurements.
    Ache P; Bauer H; Kollist H; Al-Rasheid KA; Lautner S; Hartung W; Hedrich R
    Plant J; 2010 Jun; 62(6):1072-82. PubMed ID: 20345603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Coordination effect between vapor water loss through plant stomata and liquid water supply in soil-plant-atmosphere continuum (SPAC): a review].
    Liu LM; Qi H; Luo XL; Zhang X
    Ying Yong Sheng Tai Xue Bao; 2008 Sep; 19(9):2067-73. PubMed ID: 19102325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How do leaf hydraulics limit stomatal conductance at high water vapour pressure deficits?
    Bunce JA
    Plant Cell Environ; 2006 Aug; 29(8):1644-50. PubMed ID: 16898024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ecophysiological relevance of cuticular transpiration of deciduous and evergreen plants in relation to stomatal closure and leaf water potential.
    Burghardt M; Riederer M
    J Exp Bot; 2003 Aug; 54(389):1941-9. PubMed ID: 12815029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stomatal responses to changes in vapor pressure deficit reflect tissue-specific differences in hydraulic conductance.
    Ocheltree TW; Nippert JB; Prasad PV
    Plant Cell Environ; 2014 Jan; 37(1):132-9. PubMed ID: 23701708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydraulic and chemical signalling in the control of stomatal conductance and transpiration.
    Comstock JP
    J Exp Bot; 2002 Feb; 53(367):195-200. PubMed ID: 11807122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporating non-stomatal limitation improves the performance of leaf and canopy models at high vapour pressure deficit.
    Yang J; Duursma RA; De Kauwe MG; Kumarathunge D; Jiang M; Mahmud K; Gimeno TE; Crous KY; Ellsworth DS; Peters J; Choat B; Eamus D; Medlyn BE
    Tree Physiol; 2019 Dec; 39(12):1961-1974. PubMed ID: 31631220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vapour pressure deficit during growth has little impact on genotypic differences of transpiration efficiency at leaf and whole-plant level: an example from Populus nigra L.
    Rasheed F; Dreyer E; Richard B; Brignolas F; Brendel O; Le Thiec D
    Plant Cell Environ; 2015 Apr; 38(4):670-84. PubMed ID: 25099629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adjustments of water use efficiency by stomatal regulation during drought and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri x V. rupestris).
    Pou A; Flexas J; Alsina Mdel M; Bota J; Carambula C; de Herralde F; Galmés J; Lovisolo C; Jiménez M; Ribas-Carbó M; Rusjan D; Secchi F; Tomàs M; Zsófi Z; Medrano H
    Physiol Plant; 2008 Oct; 134(2):313-23. PubMed ID: 18507813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decoupling the influence of leaf and root hydraulic conductances on stomatal conductance and its sensitivity to vapour pressure deficit as soil dries in a drained loblolly pine plantation.
    Domec JC; Noormets A; King JS; Sun G; McNulty SG; Gavazzi MJ; Boggs JL; Treasure EA
    Plant Cell Environ; 2009 Aug; 32(8):980-91. PubMed ID: 19344336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stomatal response to VPD is not triggered by changes in soil-leaf hydraulic conductance in Arabidopsis or Callitris.
    Bourbia I; Brodribb TJ
    New Phytol; 2024 Apr; 242(2):444-452. PubMed ID: 38396304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of blue light on stomatal oscillations and leaf turgor pressure in banana leaves.
    Zait Y; Shapira O; Schwartz A
    Plant Cell Environ; 2017 Jul; 40(7):1143-1152. PubMed ID: 28098339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 3-D functional-structural grapevine model that couples the dynamics of water transport with leaf gas exchange.
    Zhu J; Dai Z; Vivin P; Gambetta GA; Henke M; Peccoux A; Ollat N; Delrot S
    Ann Bot; 2018 Apr; 121(5):833-848. PubMed ID: 29293870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling the effects of plant hydraulics on stomatal closure during water stress in walnut.
    Cochard H; Coll L; Le Roux X; Améglio T
    Plant Physiol; 2002 Jan; 128(1):282-90. PubMed ID: 11788773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leaf relative water content at 50% stomatal conductance measured by noninvasive NMR is linked to climate of origin in nine species of eucalypt.
    Coleman D; Windt CW; Buckley TN; Merchant A
    Plant Cell Environ; 2023 Dec; 46(12):3791-3805. PubMed ID: 37641435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.