These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 12159953)

  • 1. A spatial impulse response based method for determining effective geometrical parameters for spherically focused transducers.
    Wu P; Stepinski T
    Ultrasonics; 2002 May; 40(1-8):307-12. PubMed ID: 12159953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Focused, phased-array plane piston and spherically-shaped concave piston transducers: comparison for the same aperture and focal point.
    Warriner RK; Cobbold RS
    Ultrasonics; 2012 Apr; 52(4):503-7. PubMed ID: 22133736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of an ultrasonic transducer's sensitivity and impedance in a pulse-echo setup.
    Lopez-Sanchez AL; Schmerr LW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Nov; 53(11):2101-12. PubMed ID: 17091845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of high-frequency, single-element focused transducers with wire target and hydrophone.
    Huang B; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Sep; 52(9):1608-12. PubMed ID: 16285460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of the surface normal velocity of high frequency ultrasound transducers.
    Rupitsch SJ; Kindermann S; Zagar BG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):225-35. PubMed ID: 18334328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneously Determining Sensitivity and Effective Geometrical Parameters of Ultrasonic Piezoelectric Transducers Using a Self-Reciprocity Method.
    Li X; Lyu D; Song Y; Zhang S; Hu P; Jeong H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Oct; 66(10):1649-1657. PubMed ID: 31283501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reflector-based phase calibration of ultrasound transducers.
    van Neer PL; Vos HJ; de Jong N
    Ultrasonics; 2011 Jan; 51(1):1-6. PubMed ID: 20537364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An improvement in the range resolution of ultrasonic pulse echo systems by deconvolution.
    Carpenter RN; Stepanishen PR
    J Acoust Soc Am; 1984 Apr; 75(4):1084-91. PubMed ID: 6725762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling Flaw Pulse-Echo Signals in Cylindrical Components Using an Ultrasonic Line-Focused Transducer with Consideration of Wave Mode Conversion.
    Wang W; Liu X; Li X; Xu G; Zhang S
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31216786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The transducer vibratory profile effects on the detection of the transient ultrasonic field scattered by a rigid point reflector.
    Khelladi H; Djelouah H
    Ultrasonics; 2010 Apr; 50(4-5):467-72. PubMed ID: 19906391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the ultrasound transducer bandwidth on selection of the complementary Golay bit code length.
    Nowicki A; Trots I; Lewin PA; Secomski W; Tymkiewicz R
    Ultrasonics; 2007 Dec; 47(1-4):64-73. PubMed ID: 17825338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of roughness, angle, range, and transducer type on the echo signal from planar interfaces.
    Wilhjelm JE; Pedersen PC; Jacobsen SM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Mar; 48(2):511-21. PubMed ID: 11370365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple method for measuring vibration amplitude of high power airborne ultrasonic transducer: using thermo-couple.
    Saffar S; Abdullah A
    Ultrasonics; 2014 Mar; 54(3):821-5. PubMed ID: 24246149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial impulse response method for predicting pulse-echo fields from a linear array with cylindrically concave surface.
    Wu P; Stepinski T
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(5):1283-97. PubMed ID: 18244321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angular spectrum method and ray algorithm for the acoustic field of a focusing transducer in an anisotropic solid.
    Every AG; Amulele GM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Mar; 49(3):307-18. PubMed ID: 12322879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lens-focused transducer modeling using an extended KLM model.
    Maréchal P; Levassort F; Tran-Huu-Hue LP; Lethiecq M
    Ultrasonics; 2007 May; 46(2):155-67. PubMed ID: 17382986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The scanning acoustic microprobe: I. Analysis and synthesis of a spherically symmetric point spread function.
    Barber FE
    J Acoust Soc Am; 1991 Jul; 90(1):1-10. PubMed ID: 1880277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steady state spherically focused, circular aperture beam patterns.
    Goldstein A
    Ultrasound Med Biol; 2006 Oct; 32(10):1441-58. PubMed ID: 17045863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A self-reciprocity calibration method for broadband focused transducers.
    Zhang S; Kube CM; Song Y; Li X
    J Acoust Soc Am; 2016 Sep; 140(3):EL236. PubMed ID: 27914415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial averaging in the beam of a piston transducer.
    Daly CJ; Rao NA
    Ultrasound Med Biol; 2001 May; 27(5):643-53. PubMed ID: 11397529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.