These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 12159983)

  • 1. Influence of acoustic impedance of multilayer acoustic systems on the transfer function of ultrasonic airborne transducers.
    Gudra T; Opieliński KJ
    Ultrasonics; 2002 May; 40(1-8):457-63. PubMed ID: 12159983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of acoustic impedances of multi matching layers for narrowband ultrasonic airborne transducers at frequencies <2.5 MHz - Application of a genetic algorithm.
    Saffar S; Abdullah A
    Ultrasonics; 2012 Jan; 52(1):169-85. PubMed ID: 21893329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the thickness of multilayer matching systems on the transfer function of ultrasonic airborne transducer.
    Opieliński KJ; Gudra T
    Ultrasonics; 2002 May; 40(1-8):465-9. PubMed ID: 12159984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impedance matching network for high frequency ultrasonic transducer for cellular applications.
    Kim MG; Yoon S; Kim HH; Shung KK
    Ultrasonics; 2016 Feb; 65():258-67. PubMed ID: 26442434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic impedance matching of medical ultrasound transducers.
    Persson HW; Hertz CH
    Ultrasonics; 1985 Mar; 23(2):83-9. PubMed ID: 3885533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfabrication of stacks of acoustic matching layers for 15 MHz ultrasonic transducers.
    Manh T; Nguyen AT; Johansen TF; Hoff L
    Ultrasonics; 2014 Feb; 54(2):614-20. PubMed ID: 24041498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibration amplitude and induced temperature limitation of high power air-borne ultrasonic transducers.
    Saffar S; Abdullah A
    Ultrasonics; 2014 Jan; 54(1):168-76. PubMed ID: 23664304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfabricated 1-3 composite acoustic matching layers for 15 MHz transducers.
    Manh T; Jensen GU; Johansen TF; Hoff L
    Ultrasonics; 2013 Aug; 53(6):1141-9. PubMed ID: 23522684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrawide Bandwidth High-Frequency Ultrasonic Transducers With Gradient Acoustic Impedance Matching Layer for Biomedical Imaging.
    Zhao J; Li Z; Fei C; Hou C; Wang D; Lou L; Chen D; Li D; Chen Z; Yang Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jun; 69(6):1952-1959. PubMed ID: 35020592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of functionally graded piezoelectric ultrasonic transducers.
    Rubio WM; Buiochi F; Adamowski JC; Silva EC
    Ultrasonics; 2009 May; 49(4-5):484-94. PubMed ID: 19230947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Narrowband impedance matching layer for high efficiency thickness mode ultrasonic transducers.
    Toda M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Mar; 49(3):299-306. PubMed ID: 12322878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Online Impedance Analysis and Matching System for Ultrasonic Transducers.
    Jin Z; Huo L; Long T; Guo X; Tu J; Zhang D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Mar; 66(3):591-599. PubMed ID: 30582535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasonic transducers working in the air with the continuous wave within the 50-500 kHz frequency range.
    Gudra T; Opielinski KJ
    Ultrasonics; 2004 Apr; 42(1-9):453-8. PubMed ID: 15047328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of matching layers for high-frequency ultrasonic transducers.
    Fei C; Ma J; Chiu CT; Williams JA; Fong W; Chen Z; Zhu B; Xiong R; Shi J; Hsiai TK; Shung KK; Zhou Q
    Appl Phys Lett; 2015 Sep; 107(12):123505. PubMed ID: 26445518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling of a novel high-impedance matching layer for high frequency (>30 MHz) ultrasonic transducers.
    Qian Y; Harris NR
    Ultrasonics; 2014 Feb; 54(2):586-91. PubMed ID: 24025461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anodic aluminum oxide-epoxy composite acoustic matching layers for ultrasonic transducer application.
    Fang HJ; Chen Y; Wong CM; Qiu WB; Chan HL; Dai JY; Li Q; Yan QF
    Ultrasonics; 2016 Aug; 70():29-33. PubMed ID: 27125558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and Modeling of Matching System for Air-Coupled Transducer.
    Zhou J; Bai J; Liu Y
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Longitudinal wave propagation in multi cylindrical viscoelastic matching layers of airborne ultrasonic transducer: new method to consider the matching layer's diameter (frequency <100 kHz).
    Saffar S; Abdullah A
    Ultrasonics; 2013 Aug; 53(6):1174-84. PubMed ID: 23537918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Input impedance matching of acoustic transducers operating at off-resonant frequencies.
    Son KT; Lee CC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2784-94. PubMed ID: 21156374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband electrical impedance matching for piezoelectric ultrasound transducers.
    Huang H; Paramo D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2699-707. PubMed ID: 23443705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.