These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 12160005)

  • 1. The dependence of ultrasound contrast agents backscatter on acoustic pressure: theory versus experiment.
    Sboros V; MacDonald CA; Pye SD; Moran CM; Gomatam J; McDicken WN
    Ultrasonics; 2002 May; 40(1-8):579-83. PubMed ID: 12160005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the limitations of ultrasonic backscatter measurements from microbubble populations.
    Sboros V; Ramnarine KV; Moran CM; Pye SD; McDicken WN
    Phys Med Biol; 2002 Dec; 47(23):4287-99. PubMed ID: 12502050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic modeling of shell-encapsulated gas bubbles.
    Frinking PJ; de Jong N
    Ultrasound Med Biol; 1998 May; 24(4):523-33. PubMed ID: 9651962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The behaviour of individual contrast agent microbubbles.
    Sboros V; Moran CM; Pye SD; McDicken WN
    Ultrasound Med Biol; 2003 May; 29(5):687-94. PubMed ID: 12754068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasonic scattering cross sections of shell-encapsulated gas bubbles immersed in a viscoelastic liquid: first and second harmonics.
    Machado JC; Valente JS
    Ultrasonics; 2003 Nov; 41(8):605-13. PubMed ID: 14585472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical modeling of microbubble backscatter to optimize ultrasound particle image velocimetry imaging: initial studies.
    Mukdadi OM; Kim HB; Hertzberg J; Shandas R
    Ultrasonics; 2004 Aug; 42(10):1111-21. PubMed ID: 15234173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear oscillation and acoustic scattering of bubbles.
    Ma Y; Zhao F
    Ultrason Sonochem; 2021 Jun; 74():105573. PubMed ID: 33940397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of an ultrasound-activated contrast microbubble with a wall at arbitrary separation distances.
    Doinikov AA; Bouakaz A
    Phys Med Biol; 2015 Oct; 60(20):7909-25. PubMed ID: 26407104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An in vitro study of a microbubble contrast agent using a clinical ultrasound imaging system.
    Sboros V; Moran CM; Pye SD; McDicken WN
    Phys Med Biol; 2004 Jan; 49(1):159-73. PubMed ID: 14971779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of nonlinear viscous stress in encapsulating shells of lipid-coated contrast agent microbubbles.
    Doinikov AA; Haac JF; Dayton PA
    Ultrasonics; 2009 Feb; 49(2):269-75. PubMed ID: 18990417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling non-spherical oscillations and stability of acoustically driven shelled microbubbles.
    Loughran J; Eckersley RJ; Tang MX
    J Acoust Soc Am; 2012 Jun; 131(6):4349-57. PubMed ID: 22712909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wave scattering from encapsulated microbubbles subject to high-frequency ultrasound: contribution of higher-order scattering modes.
    Chen J; Hunter KS; Shandas R
    J Acoust Soc Am; 2009 Oct; 126(4):1766-75. PubMed ID: 19813791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbubble oscillating in a microvessel filled with viscous fluid: A finite element modeling study.
    Chen C; Gu Y; Tu J; Guo X; Zhang D
    Ultrasonics; 2016 Mar; 66():54-64. PubMed ID: 26651263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser induced spherical bubble dynamics in partially confined geometry with acoustic feedback from container walls.
    Fu L; Liang XX; Wang S; Wang S; Wang P; Zhang Z; Wang J; Vogel A; Yao C
    Ultrason Sonochem; 2023 Dec; 101():106664. PubMed ID: 37931344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling Lipid-Coated Microbubbles in Focused Ultrasound Applications at Subresonance Frequencies.
    Gümmer J; Schenke S; Denner F
    Ultrasound Med Biol; 2021 Oct; 47(10):2958-2979. PubMed ID: 34344560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of ultrasound on adherent microbubble contrast agents.
    Loughran J; Sennoga C; J Eckersley R; Tang MX
    Phys Med Biol; 2012 Nov; 57(21):6999-7014. PubMed ID: 23044731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic scattering from a contrast agent microbubble near an elastic wall of finite thickness.
    Doinikov AA; Aired L; Bouakaz A
    Phys Med Biol; 2011 Nov; 56(21):6951-67. PubMed ID: 22008736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical Study of the Effects of Nanoparticles on the Acoustic Performance of Microbubbles.
    Yang L; Huang B; Yang F; Li Y; Gu N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jan; 69(1):54-61. PubMed ID: 34403335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Italian Society of Cardiovascular Echography (SIEC) Consensus Conference on the state of the art of contrast echocardiography.
    Ital Heart J; 2004 Apr; 5(4):309-34. PubMed ID: 15185894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematical models for the acoustic response of a solids-loaded encapsulated bubble.
    Spencer SJ
    J Acoust Soc Am; 2015 May; 137(5):2623-41. PubMed ID: 25994695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.