These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 12160064)

  • 1. Recent developments in vibrating-plate macrosonic transducers.
    Gallego-Juárez JA; Rodríguez-Corral G; Riera-Franco de Sarabia E; Vázquez-Martínez F; Campos-Pozuelo C; Acosta-Aparicio VM
    Ultrasonics; 2002 May; 40(1-8):889-93. PubMed ID: 12160064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A macrosonic system for industrial processing.
    Gallego-Juarez JA; Rodriguez-Corral G; Riera-Franco de Sarabia E ; Campos-Pozuelo C; Vazquez-Martinez F; Acosta-Aparicio VM
    Ultrasonics; 2000 Mar; 38(1-8):331-6. PubMed ID: 10829684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasonic Transducer With Increased Exposure Power and Frequency up to 100 kHz.
    Khmelev VN; Shalunov AV; Nesterov VA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 May; 68(5):1773-1782. PubMed ID: 33021930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved analytic model for designing the polymer-composite stepped-plate transducer using the modified Mindlin plate theory.
    Oh B; Kim C; Lee D; Rho J; Moon W
    Ultrasonics; 2023 May; 131():106933. PubMed ID: 36709664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Power ultrasonic transducers with extensive radiators for industrial processing.
    Gallego-Juárez JA; Rodriguez G; Acosta V; Riera E
    Ultrason Sonochem; 2010 Aug; 17(6):953-64. PubMed ID: 20022545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly-Phenylene-Sulfide Wedge Transducer for Exciting Surface Acoustic Waves for Removing Droplets on a Glass Plate.
    Wu J; Sun C; Ueda T; Tomoeda Y; Nagasawa I; Nakamura K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Nov; 68(11):3378-3385. PubMed ID: 34170824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of micromachined ultrasonic radiators on the efficiency of transducers in air.
    Je Y; Lee H; Moon W
    Ultrasonics; 2013 Aug; 53(6):1124-34. PubMed ID: 23541961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiation impedance and equivalent circuit for piezoelectric ultrasonic composite transducers of vibrational mode-conversion.
    Lin S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jan; 59(1):139-49. PubMed ID: 22293744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Evaluation of Three Designs of Electrodynamic Flexural Transducers.
    Eriksson TJ; Laws M; Kang L; Fan Y; Ramadas SN; Dixon S
    Sensors (Basel); 2016 Aug; 16(9):. PubMed ID: 27571075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasound pressure distributions generated by high frequency transducers in large reactors.
    Leong T; Coventry M; Swiergon P; Knoerzer K; Juliano P
    Ultrason Sonochem; 2015 Nov; 27():22-29. PubMed ID: 26186816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Summation of high-frequency Langevin transducers vibrations for increasing of ultrasonic radiator power.
    Khmelev VN; Shalunov AV; Nesterov VA
    Ultrasonics; 2021 Jul; 114():106413. PubMed ID: 33677165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibration characteristics of an ultrasonic transducer of two piezoelectric discs.
    Piao C; Kim JO
    Ultrasonics; 2017 Feb; 74():72-80. PubMed ID: 27743545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of acoustic impedances of multi matching layers for narrowband ultrasonic airborne transducers at frequencies <2.5 MHz - Application of a genetic algorithm.
    Saffar S; Abdullah A
    Ultrasonics; 2012 Jan; 52(1):169-85. PubMed ID: 21893329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimum radiation force target size for power measurements in focused ultrasonic fields with circular symmetry.
    Beissner K
    J Acoust Soc Am; 2010 Dec; 128(6):3355-62. PubMed ID: 21218869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new ultrasonic transducer for improved contrast nonlinear imaging.
    Bouakaz A; Cate Ft; de Jong N
    Phys Med Biol; 2004 Aug; 49(16):3515-25. PubMed ID: 15446784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micromachined ultrasound transducers with improved coupling factors from a CMOS compatible process.
    Eccardt PC; Niederer K
    Ultrasonics; 2000 Mar; 38(1-8):774-80. PubMed ID: 10829770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigations of the barbell ultrasonic transducer operated in the full-wave vibrational mode.
    Fu Z; Xian X; Lin S; Wang C; Hu W; Li G
    Ultrasonics; 2012 Jul; 52(5):578-86. PubMed ID: 22273150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directivity pattern of the sound radiated from axisymmetric stepped plates.
    He X; Yan X; Li N
    J Acoust Soc Am; 2016 Aug; 140(2):1387. PubMed ID: 27586764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A stepped-plate bi-frequency source for generating a difference frequency sound with a parametric array.
    Je Y; Lee H; Park J; Moon W
    J Acoust Soc Am; 2010 Jun; 127(6):3494-502. PubMed ID: 20550249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Equivalent circuits and directivity patterns of air-coupled ultrasonic transducers.
    Shuyu L
    J Acoust Soc Am; 2001 Mar; 109(3):949-57. PubMed ID: 11303947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.