These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 12160069)

  • 1. Experimental investigation of alternative pre-stress components for a 3-1 connectivity multilayer piezoelectric-polymer composite ultrasonic transducer.
    Robertson D; Cochran S
    Ultrasonics; 2002 May; 40(1-8):913-9. PubMed ID: 12160069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1-3 connectivity piezoelectric ceramic-polymer composite transducers made with viscous polymer processing for high frequency ultrasound.
    Abrar A; Zhang D; Su B; Button TW; Kirk KJ; Cochran S
    Ultrasonics; 2004 Apr; 42(1-9):479-84. PubMed ID: 15047332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasonic Transducer From Piezoelectric Polymer Multilayer Through Electrophoretic Deposition for Photoacoustic Imaging.
    Liew WH; Ke Q; Tan CY; Chen S; Yao K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Aug; 68(8):2741-2748. PubMed ID: 33852386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible ultrasonic transducers incorporating piezoelectric fibres.
    Harvey G; Gachagan A; Mackersie JW; McCunnie T; Banks R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Sep; 56(9):1999-2009. PubMed ID: 19812003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A flexible piezoelectric transducer design for efficient generation and reception of ultrasonic Lamb waves.
    Gachagan A; Hayward G; Banks R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jul; 52(7):1175-82. PubMed ID: 16212257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation into the effects of modification of the passive phase for improved manufacture of 1-3 connectivity piezocomposite transducers.
    O'Leary RL; Hayward G
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(3):511-6. PubMed ID: 18238451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical optimization of multilayer piezoelectric devices with nonuniform layers by simulated annealing.
    Abrar A; Cochran S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Oct; 54(10):1920-9. PubMed ID: 18019227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of Piezoelectric Ultrasonic Transducer Based on Doped PDMS.
    Yang R; Liu W; Gao W; Kang D
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33946276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Piezoelectric polymer multilayer on flexible substrate for energy harvesting.
    Zhang L; Oh SR; Wong TC; Tan CY; Yao K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Sep; 60(9):2013-20. PubMed ID: 24658732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design, fabrication, and properties of 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution.
    Dongyu X; Xin C; Banerjee S; Shifeng H
    J Appl Phys; 2014 Dec; 116(24):244103. PubMed ID: 25565725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical study on the static performance of piezoelectric ceramic-polymer composites with 2-2 connectivity.
    Cao W; Zhang QM; Cross LE
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(2):103-9. PubMed ID: 18263162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element technique for the assessment of 3-1 and "super 1-3" connectivity piezoelectric composite transducers.
    O'Leary RL; Hayward G; Murray V
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Oct; 54(10):2024-35. PubMed ID: 18019240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple model for piezoelectric ceramic/polymer 1-3 composites used in ultrasonic transducer applications.
    Chan HW; Unsworth J
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(4):434-41. PubMed ID: 18285003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the thermal stability of 1-3 piezoelectric composite transducers.
    Parr AC; O'Leary RL; Hayward G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Apr; 52(4):550-63. PubMed ID: 16060502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel multi-layer polymer-metal structures for use in ultrasonic transducer impedance matching and backing absorber applications.
    Toda M; Thompson M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2818-27. PubMed ID: 21156377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multilayer piezocomposite structures with piezoceramic volume fractions determined by mathematical optimisation.
    Abrar A; Cochran S
    Ultrasonics; 2004 Apr; 42(1-9):259-65. PubMed ID: 15047295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss effects on adhesively-bonded multilayer ultrasonic transducers by self-heating.
    Wu Z; Cochran S
    Ultrasonics; 2010 Apr; 50(4-5):508-11. PubMed ID: 19942247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy harvesting performance of piezoelectric ceramic and polymer nanowires.
    Crossley S; Kar-Narayan S
    Nanotechnology; 2015 Aug; 26(34):344001. PubMed ID: 26234477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling 1-3 composite piezoelectrics: thickness-mode oscillations.
    Smith WA; Auld BA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(1):40-7. PubMed ID: 18267555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of acoustic impedances of multi matching layers for narrowband ultrasonic airborne transducers at frequencies <2.5 MHz - Application of a genetic algorithm.
    Saffar S; Abdullah A
    Ultrasonics; 2012 Jan; 52(1):169-85. PubMed ID: 21893329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.