These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 12160090)
1. Antimalarial activity of synthetic 1,2,4-trioxanes and cyclic peroxy ketals, a quantum similarity study. Gironés X; Gallegos A; Carbó-Dorca R J Comput Aided Mol Des; 2001 Dec; 15(12):1053-63. PubMed ID: 12160090 [TBL] [Abstract][Full Text] [Related]
2. Ligand-based virtual screening and in silico design of new antimalarial compounds using nonstochastic and stochastic total and atom-type quadratic maps. Marrero-Ponce Y; Iyarreta-Veitía M; Montero-Torres A; Romero-Zaldivar C; Brandt CA; Avila PE; Kirchgatter K; Machado Y J Chem Inf Model; 2005; 45(4):1082-100. PubMed ID: 16045304 [TBL] [Abstract][Full Text] [Related]
3. Design, Synthesis, and Biological Evaluation of Novel 1,2,4-Trioxanes as Potential Antimalarial Agents. Gupta AK; Varshney K; Kumar V; Srivastava K; Pant AB; Puri SK; Saxena AK Arch Pharm (Weinheim); 2017 Apr; 350(3-4):. PubMed ID: 28207169 [TBL] [Abstract][Full Text] [Related]
4. Pharmacophore modeling of substituted 1,2,4-Trioxanes for quantitative prediction of their antimalarial activity. Gupta AK; Chakroborty S; Srivastava K; Puri SK; Saxena AK J Chem Inf Model; 2010 Aug; 50(8):1510-20. PubMed ID: 20726605 [TBL] [Abstract][Full Text] [Related]
5. Design, synthesis, and in vitro cancer cell growth inhibition evaluation and antimalarial testing of trioxanes installed in cyclic 2-enoate substructures. Hossain MI; Świtalska M; Peng W; Takashima M; Wang N; Kaiser M; Wietrzyk J; Dan S; Yamori T; Inokuchi T Eur J Med Chem; 2013 Nov; 69():294-309. PubMed ID: 24056020 [TBL] [Abstract][Full Text] [Related]
6. QSAR and pharmacophore modeling of natural and synthetic antimalarial prodiginines. Singh B; Vishwakarma RA; Bharate SB Curr Comput Aided Drug Des; 2013 Sep; 9(3):350-9. PubMed ID: 24010933 [TBL] [Abstract][Full Text] [Related]
8. Enantiomeric 1,2,4-trioxanes display equivalent in vitro antimalarial activity versus Plasmodium falciparum malaria parasites: implications for the molecular mechanism of action of the artemisinins. O'Neill PM; Rawe SL; Borstnik K; Miller A; Ward SA; Bray PG; Davies J; Oh CH; Posner GH Chembiochem; 2005 Nov; 6(11):2048-54. PubMed ID: 16222725 [TBL] [Abstract][Full Text] [Related]
9. Antimalarial activity: a QSAR modeling using CODESSA PRO software. Katritzky AR; Kulshyn OV; Stoyanova-Slavova I; Dobchev DA; Kuanar M; Fara DC; Karelson M Bioorg Med Chem; 2006 Apr; 14(7):2333-57. PubMed ID: 16426851 [TBL] [Abstract][Full Text] [Related]
10. QSAR, docking and ADMET studies of artemisinin derivatives for antimalarial activity targeting plasmepsin II, a hemoglobin-degrading enzyme from P. falciparum. Qidwai T; Yadav DK; Khan F; Dhawan S; Bhakuni RS Curr Pharm Des; 2012; 18(37):6133-54. PubMed ID: 22670592 [TBL] [Abstract][Full Text] [Related]
11. Modeling antimalarial activity: application of Kinetic Energy Density Quantum Similarity Measures as descriptors in QSAR. Gironés X; Gallegos A; Carbó-Dorca R J Chem Inf Comput Sci; 2000; 40(6):1400-7. PubMed ID: 11128098 [TBL] [Abstract][Full Text] [Related]
12. Tetraoxanes as antimalarials: harnessing the endoperoxide. Fisher LC; Blackie MA Mini Rev Med Chem; 2014 Feb; 14(2):123-35. PubMed ID: 24456270 [TBL] [Abstract][Full Text] [Related]
13. 3D QSAR, pharmacophore and molecular docking studies of known inhibitors and designing of novel inhibitors for M18 aspartyl aminopeptidase of Plasmodium falciparum. Kumari M; Chandra S; Tiwari N; Subbarao N BMC Struct Biol; 2016 Aug; 16():12. PubMed ID: 27534744 [TBL] [Abstract][Full Text] [Related]
15. Rational Design of Proteasome Inhibitors as Antimalarial Drugs. Le Chapelain C; Groll M Angew Chem Int Ed Engl; 2016 May; 55(22):6370-2. PubMed ID: 27079849 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of antimalarial 1,2,4-trioxanes via photooxygenation of a chiral allylic alcohol. Griesbeck AG; El-Idreesy TT; Fiege M; Brun R Org Lett; 2002 Nov; 4(24):4193-5. PubMed ID: 12443056 [TBL] [Abstract][Full Text] [Related]
17. In Silico Mining for Antimalarial Structure-Activity Knowledge and Discovery of Novel Antimalarial Curcuminoids. Viira B; Gendron T; Lanfranchi DA; Cojean S; Horvath D; Marcou G; Varnek A; Maes L; Maran U; Loiseau PM; Davioud-Charvet E Molecules; 2016 Jun; 21(7):. PubMed ID: 27367660 [TBL] [Abstract][Full Text] [Related]
18. Application of molecular topology to the prediction of the antimalarial activity of a group of uracil-based acyclic and deoxyuridine compounds. García-Domenech R; López-Peña W; Sanchez-Perdomo Y; Sanders JR; Sierra-Araujo MM; Zapata C; Gálvez J Int J Pharm; 2008 Nov; 363(1-2):78-84. PubMed ID: 18675892 [TBL] [Abstract][Full Text] [Related]
19. Novel bis- and tris-1,2,4-trioxanes: synthesis and antimalarial activity against multidrug-resistant Plasmodium yoelii in Swiss mice. Singh C; Verma VP; Naikade NK; Singh AS; Hassam M; Puri SK J Med Chem; 2008 Dec; 51(23):7581-92. PubMed ID: 19006381 [TBL] [Abstract][Full Text] [Related]
20. A QSAR study of the antimalarial activity of some synthetic 1,2,4-trioxanes. Grigorov M; Weber J; Tronchet JM; Jefford CW; Milhous WK; Maric D J Chem Inf Comput Sci; 1997; 37(1):124-30. PubMed ID: 9025258 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]