BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 12160606)

  • 1. Effect of reducing agents on the acidification capacity and the proton motive force of Lactococcus lactis ssp. cremoris resting cells.
    Waché Y; Riondet C; Diviès C; Cachon R
    Bioelectrochemistry; 2002 Sep; 57(2):113-8. PubMed ID: 12160606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proton motive force during growth of Streptococcus lactis cells.
    Kashket ER; Blanchard AG; Metzger WC
    J Bacteriol; 1980 Jul; 143(1):128-34. PubMed ID: 6772626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [PH and oxidation-reduction potential change of environment during a growth of lactic acid bacteria: effects of oxidizers and reducers].
    Sogomonian D; Akopian K; Trchunian A
    Prikl Biokhim Mikrobiol; 2011; 47(1):33-8. PubMed ID: 21442918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of Lactococcus lactis subsp. cremoris MG 1363 in acid stress conditions.
    Mercade M; Lindley ND; Loubière P
    Int J Food Microbiol; 2000 Apr; 55(1-3):161-5. PubMed ID: 10791737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of dissolved oxygen on redox potential and milk acidification by lactic acid bacteria isolated from a DL-starter culture.
    Larsen N; Werner BB; Vogensen FK; Jespersen L
    J Dairy Sci; 2015 Mar; 98(3):1640-51. PubMed ID: 25597975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differentiation of Lactococcus lactis subspecies lactis and subspecies cremoris strains by their adaptive response to stresses.
    Kim WS; Ren J; Dunn NW
    FEMS Microbiol Lett; 1999 Feb; 171(1):57-65. PubMed ID: 9987842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of exofacial thiol groups in the reducing activity of Lactococcus lactis.
    Michelon D; Abraham S; Ebel B; De Coninck J; Husson F; Feron G; Gervais P; Cachon R
    FEBS J; 2010 May; 277(10):2282-90. PubMed ID: 20423456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of fermented milk from Lactococcus lactis ssp. cremoris strain JFR1 on Salmonella invasion of intestinal epithelial cells.
    Zhang JS; Corredig M; Morales-Rayas R; Hassan A; Griffiths MW; LaPointe G
    J Dairy Sci; 2019 Aug; 102(8):6802-6819. PubMed ID: 31202650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of extracellular pH on growth, viability, cell size, acidification activity, and intracellular pH of Lactococcus lactis in batch fermentations.
    Hansen G; Johansen CL; Marten G; Wilmes J; Jespersen L; Arneborg N
    Appl Microbiol Biotechnol; 2016 Jul; 100(13):5965-76. PubMed ID: 27020293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proton motive force-dependent Hoechst 33342 transport by the ABC transporter LmrA of Lactococcus lactis.
    van den Berg van Saparoea HB; Lubelski J; van Merkerk R; Mazurkiewicz PS; Driessen AJ
    Biochemistry; 2005 Dec; 44(51):16931-8. PubMed ID: 16363806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glyceraldehyde-3-phosphate dehydrogenase regulation in Lactococcus lactis ssp. cremoris MG1363 or relA mutant at low pH.
    Mercade M; Cocaign-Bousquet M; Loubière P
    J Appl Microbiol; 2006 Jun; 100(6):1364-72. PubMed ID: 16696685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of lactose-citrate co-metabolism on the differences of growth and energetics in Leuconostoc lactis, Leuconostoc mesenteroides ssp. mesenteroides and Leuconostoc mesenteroides ssp. cremoris.
    Hache C; Cachon R; Wache Y; Belguendouz T; Riondet C; Deraedt A; Divies C
    Syst Appl Microbiol; 1999 Dec; 22(4):507-13. PubMed ID: 10794137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microencapsulation of Lactococcus lactis subsp. cremoris.
    Larisch BC; Poncelet D; Champagne CP; Neufeld RJ
    J Microencapsul; 1994; 11(2):189-95. PubMed ID: 8006766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of citrate metabolism in Lactococcus lactis: resistance against lactate toxicity at low pH.
    Magni C; de Mendoza D; Konings WN; Lolkema JS
    J Bacteriol; 1999 Mar; 181(5):1451-7. PubMed ID: 10049375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton motive force-driven and ATP-dependent drug extrusion systems in multidrug-resistant Lactococcus lactis.
    Bolhuis H; Molenaar D; Poelarends G; van Veen HW; Poolman B; Driessen AJ; Konings WN
    J Bacteriol; 1994 Nov; 176(22):6957-64. PubMed ID: 7961458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of sodium reduction with and without potassium chloride on the survival of Listeria monocytogenes in Cheddar cheese.
    Hystead E; Diez-Gonzalez F; Schoenfuss TC
    J Dairy Sci; 2013 Oct; 96(10):6172-85. PubMed ID: 23910550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The application of pH-sensitive fluorescent dyes in lactic acid bacteria reveals distinct extrusion systems for unmodified and conjugated dyes.
    Glaasker E; Konings WN; Poolman B
    Mol Membr Biol; 1996; 13(3):173-81. PubMed ID: 8905646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative and reductive routes of glycerol and glucose fermentation by Escherichia coli batch cultures and their regulation by oxidizing and reducing reagents at different pHs.
    Poladyan A; Avagyan A; Vassilian A; Trchounian A
    Curr Microbiol; 2013 Jan; 66(1):49-55. PubMed ID: 23053487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Addition of oxidizing or reducing agents to the reaction medium influences amino acid conversion to aroma compounds by Lactococcus lactis.
    Kieronczyk A; Cachon R; Feron G; Yvon M
    J Appl Microbiol; 2006 Nov; 101(5):1114-22. PubMed ID: 17040235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two methods for the genetic differentiation of Lactococcus lactis ssp. lactis and cremoris based on differences in the 16S rRNA gene sequence.
    Ward LJ; Brown JC; Davey GP
    FEMS Microbiol Lett; 1998 Sep; 166(1):15-20. PubMed ID: 9741080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.