BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 12160608)

  • 1. Photo-electrochemical control of photosystem II chlorophyll fluorescence in vivo.
    Vredenberg WJ; Bulychev AA
    Bioelectrochemistry; 2002 Sep; 57(2):123-8. PubMed ID: 12160608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A three-state model for energy trapping and chlorophyll fluorescence in photosystem II incorporating radical pair recombination.
    Vredenberg WJ
    Biophys J; 2000 Jul; 79(1):26-38. PubMed ID: 10866935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlorophyll a fluorescence rise induced by high light illumination of dark-adapted plant tissue studied by means of a model of photosystem II and considering photosystem II heterogeneity.
    Lazár D
    J Theor Biol; 2003 Feb; 220(4):469-503. PubMed ID: 12623282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resolution of the Photosystem I and Photosystem II contributions to chlorophyll fluorescence of intact leaves at room temperature.
    Franck F; Juneau P; Popovic R
    Biochim Biophys Acta; 2002 Dec; 1556(2-3):239-46. PubMed ID: 12460682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of the light-harvesting function of chloroplast membranes by aggregation of the LHCII chlorophyll-protein complex.
    Horton P; Ruban AV; Rees D; Pascal AA; Noctor G; Young AJ
    FEBS Lett; 1991 Nov; 292(1-2):1-4. PubMed ID: 1959588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A few molecules of zeaxanthin per reaction centre of photosystem II permit effective thermal dissipation of light energy in photosystem II of a poikilohydric moss.
    Bukhov NG; Kopecky J; Pfündel EE; Klughammer C; Heber U
    Planta; 2001 Apr; 212(5-6):739-48. PubMed ID: 11346947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-dependent triplet and fluorescence quantum yields of the photosystem II reaction center described in a thermodynamic model.
    Groot ML; Peterman EJ; van Kan PJ; van Stokkum IH; Dekker JP; van Grondelle R
    Biophys J; 1994 Jul; 67(1):318-30. PubMed ID: 7919002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The intrinsic 22 kDa protein is a chlorophyll-binding subunit of photosystem II.
    Funk C; Schröder WP; Green BR; Renger G; Andersson B
    FEBS Lett; 1994 Apr; 342(3):261-6. PubMed ID: 8150081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global spectral-kinetic analysis of room temperature chlorophyll a fluorescence from light-harvesting antenna mutants of barley.
    Gilmor AM; Itoh S; Govindjee
    Philos Trans R Soc Lond B Biol Sci; 2000 Oct; 355(1402):1371-84. PubMed ID: 11127992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence quenching by chlorophyll cations in photosystem II.
    Schweitzer RH; Brudvig GW
    Biochemistry; 1997 Sep; 36(38):11351-9. PubMed ID: 9298954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy dissipation in photosynthesis: does the quenching of chlorophyll fluorescence originate from antenna complexes of photosystem II or from the reaction center?
    Bukhov NG; Heber U; Wiese C; Shuvalov VA
    Planta; 2001 Apr; 212(5-6):749-58. PubMed ID: 11346948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein phosphorylation and Mg2+ influence light harvesting and electron transport in chloroplast thylakoid membrane material containing only the chlorophyll-a/b-binding light-harvesting complex of photosystem II and photosystem I.
    Harrison MA; Allen JF
    Eur J Biochem; 1992 Mar; 204(3):1107-14. PubMed ID: 1551390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional effects of structural changes in photosystem II as measured by chlorophyll fluorescence kinetics.
    Vermaas WF
    Methods Cell Biol; 1995; 50():15-30. PubMed ID: 8531791
    [No Abstract]   [Full Text] [Related]  

  • 14. Picosecond time-resolved fluorescence studies on excitation energy transfer in a histidine 117 mutant of the D2 protein of photosystem II in Synechocystis 6803.
    Vasil'ev S; Bruce D
    Biochemistry; 2000 Nov; 39(46):14211-8. PubMed ID: 11087370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The origins of nonphotochemical quenching of chlorophyll fluorescence in photosynthesis. Direct quenching by P680+ in photosystem II enriched membranes at low pH.
    Bruce D; Samson G; Carpenter C
    Biochemistry; 1997 Jan; 36(4):749-55. PubMed ID: 9020772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Triplet and fluorescing states of the CP47 antenna complex of photosystem II studied as a function of temperature.
    Groot ML; Peterman EJ; van Stokkum IH; Dekker JP; van Grondelle R
    Biophys J; 1995 Jan; 68(1):281-90. PubMed ID: 7711252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic characterization of triplet forming states in photosystem II.
    Vass I; Styring S
    Biochemistry; 1992 Jul; 31(26):5957-63. PubMed ID: 1320926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonphotochemical quenching of excitation energy in photosystem II. A picosecond time-resolved study of the low yield of chlorophyll a fluorescence induced by single-turnover flash in isolated spinach thylakoids.
    Vasil'ev S; Bruce D
    Biochemistry; 1998 Aug; 37(31):11046-54. PubMed ID: 9693000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association of His117 in the D2 protein of photosystem II with a chlorophyll that affects excitation-energy transfer efficiency to the reaction center.
    Lince MT; Vermaas W
    Eur J Biochem; 1998 Sep; 256(3):595-602. PubMed ID: 9780236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of the photosystem II acceptor side function in a D1 mutant (arginine-269-glycine) of Chlamydomonas reinhardti.
    Xiong J; Hutchison RS; Sayre RT; Govindjee
    Biochim Biophys Acta; 1997 Nov; 1322(1):60-76. PubMed ID: 9398079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.