These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 12160608)

  • 61. Restoration of light induced photosystem II inhibition without de novo protein synthesis.
    Hundal T; Aro EM; Carlberg I; Andersson B
    FEBS Lett; 1990 Jul; 267(2):203-6. PubMed ID: 2199214
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Structure-based kinetic modeling of excited-state transfer and trapping in histidine-tagged photosystem II core complexes from synechocystis.
    Vassiliev S; Lee CI; Brudvig GW; Bruce D
    Biochemistry; 2002 Oct; 41(40):12236-43. PubMed ID: 12356326
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Identification of proton-active residues in a higher plant light-harvesting complex.
    Walters RG; Ruban AV; Horton P
    Proc Natl Acad Sci U S A; 1996 Nov; 93(24):14204-9. PubMed ID: 8943085
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Light-harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis.
    Goral TK; Johnson MP; Duffy CD; Brain AP; Ruban AV; Mullineaux CW
    Plant J; 2012 Jan; 69(2):289-301. PubMed ID: 21919982
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Chromophore organization in the higher-plant photosystem II antenna protein CP26.
    Croce R; Canino G; Ros F; Bassi R
    Biochemistry; 2002 Jun; 41(23):7334-43. PubMed ID: 12044165
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Spectral characterization of chlorophyll fluorescence in barley leaves during linear heating. Analysis of high-temperature fluorescence rise around 60 degrees C.
    Ilík P; Kouril R; Fiala J; Naus J; Vácha F
    J Photochem Photobiol B; 2000 Dec; 59(1-3):103-14. PubMed ID: 11332877
    [TBL] [Abstract][Full Text] [Related]  

  • 67. [Fluorescence, chlorophyll shape and number of photosystem reaction centers I and II in chlorotica mutants of Pisum sativum L].
    Ladygin VG
    Biofizika; 2002; 47(6):1032-43. PubMed ID: 12500566
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Assembly of light-harvesting chlorophyll a/b complex in vitro. Time-resolved fluorescence measurements.
    Booth PJ; Paulsen H
    Biochemistry; 1996 Apr; 35(16):5103-8. PubMed ID: 8611494
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Antisense inhibition of the photosynthetic antenna proteins CP29 and CP26: implications for the mechanism of protective energy dissipation.
    Andersson J; Walters RG; Horton P; Jansson S
    Plant Cell; 2001 May; 13(5):1193-204. PubMed ID: 11340191
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Light emission originating from photosystem II radical pair recombination is sensitive to zeaxanthin related non-photochemical quenching (NPQ).
    Wagner H; Gilbert M; Goss R; Wilhelm C
    J Photochem Photobiol B; 2006 Jun; 83(3):172-9. PubMed ID: 16488152
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood.
    Feild TS; Lee DW; Holbrook NM
    Plant Physiol; 2001 Oct; 127(2):566-74. PubMed ID: 11598230
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Dynamic properties of the minor chlorophyll a/b binding proteins of photosystem II, an in vitro model for photoprotective energy dissipation in the photosynthetic membrane of green plants.
    Ruban AV; Young AJ; Horton P
    Biochemistry; 1996 Jan; 35(3):674-8. PubMed ID: 8547246
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Engineering of N-terminal threonines in the D1 protein impairs photosystem II energy transfer in Synechocystis 6803.
    Funk C; Schröder WP; Salih G; Wiklund R; Jansson C
    FEBS Lett; 1998 Oct; 436(3):434-8. PubMed ID: 9801164
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Functional compartmental modeling of the photosystems in the thylakoid membrane at 77 K.
    Snellenburg JJ; Dekker JP; van Grondelle R; van Stokkum IH
    J Phys Chem B; 2013 Sep; 117(38):11363-71. PubMed ID: 23848485
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Characterization of photosynthetic pigment composition, photosystem II photochemistry and thermal energy dissipation during leaf senescence of wheat plants grown in the field.
    Lu C; Lu Q; Zhang J; Kuang T
    J Exp Bot; 2001 Sep; 52(362):1805-10. PubMed ID: 11520868
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Carotenoid-dependent oligomerization of the major chlorophyll a/b light harvesting complex of photosystem II of plants.
    Ruban AV; Phillip D; Young AJ; Horton P
    Biochemistry; 1997 Jun; 36(25):7855-9. PubMed ID: 9201929
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Magnetic field-induced fluorescence changes in chlorophyll-proteins enriched with P-700.
    Voznyak VM; Ganago IB; Moskalenko AA; Elfimov EI
    Biochim Biophys Acta; 1980 Sep; 592(2):364-8. PubMed ID: 7407097
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Functional architecture of the major light-harvesting complex from higher plants.
    Formaggio E; Cinque G; Bassi R
    J Mol Biol; 2001 Dec; 314(5):1157-66. PubMed ID: 11743731
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll.
    Pätsikkä E; Kairavuo M; Sersen F; Aro EM; Tyystjärvi E
    Plant Physiol; 2002 Jul; 129(3):1359-67. PubMed ID: 12114589
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The relationship between the binding of dicyclohexylcarbodiimide and quenching of chlorophyll fluorescence in the light-harvesting proteins of photosystem II.
    Ruban AV; Pesaresi P; Wacker U; Irrgang KD; Bassi R; Horton P
    Biochemistry; 1998 Aug; 37(33):11586-91. PubMed ID: 9708995
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.