These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 12161105)

  • 41. Heterologous expression of human {alpha}6{beta}4{beta}3{alpha}5 nicotinic acetylcholine receptors: binding properties consistent with their natural expression require quaternary subunit assembly including the {alpha}5 subunit.
    Grinevich VP; Letchworth SR; Lindenberger KA; Menager J; Mary V; Sadieva KA; Buhlman LM; Bohme GA; Pradier L; Benavides J; Lukas RJ; Bencherif M
    J Pharmacol Exp Ther; 2005 Feb; 312(2):619-26. PubMed ID: 15356217
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An alpha3beta4 subunit combination acts as a major functional nicotinic acetylcholine receptor in male rat pelvic ganglion neurons.
    Park KS; Cha SK; Kim MJ; Kim DR; Jeong SW; Lee JW; Kong ID
    Pflugers Arch; 2006 Sep; 452(6):775-83. PubMed ID: 16715294
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rat alpha3/beta4 subtype of neuronal nicotinic acetylcholine receptor stably expressed in a transfected cell line: pharmacology of ligand binding and function.
    Xiao Y; Meyer EL; Thompson JM; Surin A; Wroblewski J; Kellar KJ
    Mol Pharmacol; 1998 Aug; 54(2):322-33. PubMed ID: 9687574
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Assessment of the expression and role of the α1-nAChR subunit in efferent cholinergic function during the development of the mammalian cochlea.
    Roux I; Wu JS; McIntosh JM; Glowatzki E
    J Neurophysiol; 2016 Aug; 116(2):479-92. PubMed ID: 27098031
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biophysical and pharmacological characterization of α6-containing nicotinic acetylcholine receptors expressed in HEK293 cells.
    Rasmussen AH; Strøbæk D; Dyhring T; Jensen ML; Peters D; Grunnet M; Timmermann DB; Ahring PK
    Brain Res; 2014 Jan; 1542():1-11. PubMed ID: 24157862
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular characterization of Dalpha6 and Dalpha7 nicotinic acetylcholine receptor subunits from Drosophila: formation of a high-affinity alpha-bungarotoxin binding site revealed by expression of subunit chimeras.
    Lansdell SJ; Millar NS
    J Neurochem; 2004 Jul; 90(2):479-89. PubMed ID: 15228604
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrophysiological, pharmacological, and molecular evidence for alpha7-nicotinic acetylcholine receptors in rat midbrain dopamine neurons.
    Wu J; George AA; Schroeder KM; Xu L; Marxer-Miller S; Lucero L; Lukas RJ
    J Pharmacol Exp Ther; 2004 Oct; 311(1):80-91. PubMed ID: 15178698
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Expression of nicotinic acetylcholine receptors and subunit mRNA transcripts in cultures of neural crest cells.
    Howard MJ; Gershon MD; Margiotta JF
    Dev Biol; 1995 Aug; 170(2):479-95. PubMed ID: 7649378
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Key role of the nicotinic receptor in neurotransmitter exocytosis in human chromaffin cells.
    Pérez-Alvarez A; Albillos A
    J Neurochem; 2007 Dec; 103(6):2281-90. PubMed ID: 17883397
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The anticonvulsive drug lamotrigine blocks neuronal {alpha}4{beta}2 nicotinic acetylcholine receptors.
    Zheng C; Yang K; Liu Q; Wang MY; Shen J; Vallés AS; Lukas RJ; Barrantes FJ; Wu J
    J Pharmacol Exp Ther; 2010 Nov; 335(2):401-8. PubMed ID: 20688974
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Differential coupling of alpha7 and non-alpha7 nicotinic acetylcholine receptors to calcium-induced calcium release and voltage-operated calcium channels in PC12 cells.
    Dickinson JA; Hanrott KE; Mok MH; Kew JN; Wonnacott S
    J Neurochem; 2007 Feb; 100(4):1089-96. PubMed ID: 17181555
    [TBL] [Abstract][Full Text] [Related]  

  • 52. α7 and β2 Nicotinic Acetylcholine Receptor Subunits Form Heteromeric Receptor Complexes that Are Expressed in the Human Cortex and Display Distinct Pharmacological Properties.
    Thomsen MS; Zwart R; Ursu D; Jensen MM; Pinborg LH; Gilmour G; Wu J; Sher E; Mikkelsen JD
    PLoS One; 2015; 10(6):e0130572. PubMed ID: 26086615
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Calcium influx through neuronal-type nicotinic acetylcholine receptors present on the neuroendocrine cells of the porcine pars intermedia.
    Poisbeau P; Trouslard J; Feltz P; Schlichter R
    Neuroendocrinology; 1994 Oct; 60(4):378-88. PubMed ID: 7824080
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Crucial role of nicotinic α5 subunit variants for Ca2+ fluxes in ventral midbrain neurons.
    Sciaccaluga M; Moriconi C; Martinello K; Catalano M; Bermudez I; Stitzel JA; Maskos U; Fucile S
    FASEB J; 2015 Aug; 29(8):3389-98. PubMed ID: 25911614
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Roles of nicotinic acetylcholine receptor β subunit cytoplasmic loops in acute desensitization and single-channel features.
    Liu Q; Kuo YP; Shen J; Lukas RJ; Wu J
    Neuroscience; 2015 Mar; 289():315-23. PubMed ID: 25536046
    [TBL] [Abstract][Full Text] [Related]  

  • 56. "Optical patch-clamping": single-channel recording by imaging Ca2+ flux through individual muscle acetylcholine receptor channels.
    Demuro A; Parker I
    J Gen Physiol; 2005 Sep; 126(3):179-92. PubMed ID: 16103278
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Volatile organic compounds inhibit human and rat neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes.
    Bale AS; Meacham CA; Benignus VA; Bushnell PJ; Shafer TJ
    Toxicol Appl Pharmacol; 2005 May; 205(1):77-88. PubMed ID: 15885267
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Brain-derived neurotrophic factor and trkB signaling in parasympathetic neurons: relevance to regulating alpha7-containing nicotinic receptors and synaptic function.
    Zhou X; Nai Q; Chen M; Dittus JD; Howard MJ; Margiotta JF
    J Neurosci; 2004 May; 24(18):4340-50. PubMed ID: 15128848
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Membrane potential fluorescence: a rapid and highly sensitive assay for nicotinic receptor channel function.
    Fitch RW; Xiao Y; Kellar KJ; Daly JW
    Proc Natl Acad Sci U S A; 2003 Apr; 100(8):4909-14. PubMed ID: 12657731
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Regulation of nicotinic acetylcholine receptor desensitization by Ca2+.
    Guo X; Lester RA
    J Neurophysiol; 2007 Jan; 97(1):93-101. PubMed ID: 17050825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.