These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 12161933)

  • 1. Real-time MRI and articulatory coordination in speech.
    Demolin D; Hassid S; Metens T; Soquet A
    C R Biol; 2002 Apr; 325(4):547-56. PubMed ID: 12161933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inter-speaker speech variability assessment using statistical deformable models from 3.0 tesla magnetic resonance images.
    Vasconcelos MJ; Ventura SM; Freitas DR; Tavares JM
    Proc Inst Mech Eng H; 2012 Mar; 226(3):185-96. PubMed ID: 22558833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward dynamic magnetic resonance imaging of the vocal tract during speech production.
    Ventura SM; Freitas DR; Tavares JM
    J Voice; 2011 Jul; 25(4):511-8. PubMed ID: 20471801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human vocal tract analysis by in vivo 3D MRI during phonation: a complete system for imaging, quantitative modeling, and speech synthesis.
    Wismueller A; Behrends J; Hoole P; Leinsinger GL; Reiser MF; Westesson PL
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):306-12. PubMed ID: 18982619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using statistical deformable models to reconstruct vocal tract shape from magnetic resonance images.
    Vasconcelos MJ; Rua Ventura SM; Freitas DR; Tavares JM
    Proc Inst Mech Eng H; 2010 Oct; 224(10):1153-63. PubMed ID: 21138233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The magnetic resonance imaging subset of the mngu0 articulatory corpus.
    Steiner I; Richmond K; Marshall I; Gray CD
    J Acoust Soc Am; 2012 Feb; 131(2):EL106-11. PubMed ID: 22352608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stroboscopic articulography using fast magnetic resonance imaging.
    Mathiak K; Klose U; Ackermann H; Hertrich I; Kincses WE; Grodd W
    Int J Lang Commun Disord; 2000; 35(3):419-25. PubMed ID: 10963023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Region segmentation in the frequency domain applied to upper airway real-time magnetic resonance images.
    Bresch E; Narayanan S
    IEEE Trans Med Imaging; 2009 Mar; 28(3):323-38. PubMed ID: 19244005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study of acoustic-to-articulatory inversion of speech by analysis-by-synthesis using chain matrices and the Maeda articulatory model.
    Panchapagesan S; Alwan A
    J Acoust Soc Am; 2011 Apr; 129(4):2144-62. PubMed ID: 21476670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved imaging of lingual articulation using real-time multislice MRI.
    Kim YC; Proctor MI; Narayanan SS; Nayak KS
    J Magn Reson Imaging; 2012 Apr; 35(4):943-8. PubMed ID: 22127935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Weight-bearing MR imaging as an option in the study of gravitational effects on the vocal tract of untrained subjects in singing phonation.
    Traser L; Burdumy M; Richter B; Vicari M; Echternach M
    PLoS One; 2014; 9(11):e112405. PubMed ID: 25379885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic resonance imaging in the evaluation of occult submucous cleft palate.
    Kuehn DP; Ettema SL; Goldwasser MS; Barkmeier JC; Wachtel JM
    Cleft Palate Craniofac J; 2001 Sep; 38(5):421-31. PubMed ID: 11522163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of MRI and biomedical engineering in speech production study.
    Ventura SR; Freitas DR; Tavares JM
    Comput Methods Biomech Biomed Engin; 2009 Dec; 12(6):671-81. PubMed ID: 19418317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of the vocal tract spectrum from the underlying articulatory mechanism.
    Kaburagi T; Kim J
    J Acoust Soc Am; 2007 Jan; 121(1):456-68. PubMed ID: 17297800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional MR with use of FLASH sequences in the evaluation of the phono-articulatory tract.
    Meduri S; Bazzocchi M; Zuiani C; Falcone B; Bertino G; Marioni G
    MAGMA; 1999 Oct; 9(1-2):5-15. PubMed ID: 10555168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A neural network model of the articulatory-acoustic forward mapping trained on recordings of articulatory parameters.
    Kello CT; Plaut DC
    J Acoust Soc Am; 2004 Oct; 116(4 Pt 1):2354-64. PubMed ID: 15532666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A modeling investigation of articulatory variability and acoustic stability during American English /r/ production.
    Nieto-Castanon A; Guenther FH; Perkell JS; Curtin HD
    J Acoust Soc Am; 2005 May; 117(5):3196-212. PubMed ID: 15957787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fast and flexible MRI system for the study of dynamic vocal tract shaping.
    Lingala SG; Zhu Y; Kim YC; Toutios A; Narayanan S; Nayak KS
    Magn Reson Med; 2017 Jan; 77(1):112-125. PubMed ID: 26778178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of pausing behavior in spontaneous speech using real-time magnetic resonance imaging of articulation.
    Ramanarayanan V; Bresch E; Byrd D; Goldstein L; Narayanan SS
    J Acoust Soc Am; 2009 Nov; 126(5):EL160-5. PubMed ID: 19894792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphologic differences in the vocal tract resonance cavities of voice professionals: an MRI-based study.
    Rua Ventura SM; Freitas DR; Ramos IM; Tavares JM
    J Voice; 2013 Mar; 27(2):132-40. PubMed ID: 23406840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.