BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 12162332)

  • 1. Assessment of PEO/PTMO multiblock copolymer/segmented polyurethane blends as coating materials for urinary catheters: in vitro bacterial adhesion and encrustation behavior.
    Park JH; Cho YW; Kwon IC; Jeong SY; Bae YH
    Biomaterials; 2002 Oct; 23(19):3991-4000. PubMed ID: 12162332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physicochemical properties and in vitro biocompatibility of PEO/PTMO multiblock copolymer/segmented polyurethane blends.
    Park JH; Bae YH
    J Biomater Sci Polym Ed; 2002; 13(5):527-42. PubMed ID: 12182557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonfouling biomaterials based on polyethylene oxide-containing amphiphilic triblock copolymers as surface modifying additives: solid state structure of PEO-copolymer/polyurethane blends.
    Tan J; Brash JL
    J Biomed Mater Res A; 2008 Jun; 85(4):862-72. PubMed ID: 17896775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Which indwelling urethral catheters resist encrustation by Proteus mirabilis biofilms?
    Morris NS; Stickler DJ; Winters C
    Br J Urol; 1997 Jul; 80(1):58-63. PubMed ID: 9240181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and validation of a dynamic flow model simulating encrustation of biomaterials in the urinary tract.
    Gorman SP; Garvin CP; Quigley F; Jones DS
    J Pharm Pharmacol; 2003 Apr; 55(4):461-8. PubMed ID: 12803767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An electrified catheter to resist encrustation by Proteus mirabilis biofilm.
    Chakravarti A; Gangodawila S; Long MJ; Morris NS; Blacklock AR; Stickler DJ
    J Urol; 2005 Sep; 174(3):1129-32. PubMed ID: 16094079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of crosslinked blends of Pellethene and multiblock polyurethanes containing phospholipid.
    Yoo HJ; Kim HD
    Biomaterials; 2005 Jun; 26(16):2877-86. PubMed ID: 15603783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does drinking cranberry juice produce urine inhibitory to the development of crystalline, catheter-blocking Proteus mirabilis biofilms?
    Morris NS; Stickler DJ
    BJU Int; 2001 Aug; 88(3):192-7. PubMed ID: 11488728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfonated poly(ethylene oxide)-grafted polyurethane copolymer for biomedical applications.
    Han DK; Park KD; Kim YH
    J Biomater Sci Polym Ed; 1998; 9(2):163-74. PubMed ID: 9493843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Encrustation of indwelling urethral catheters by Proteus mirabilis biofilms growing in human urine.
    Morris NS; Stickler DJ
    J Hosp Infect; 1998 Jul; 39(3):227-34. PubMed ID: 9699143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A clinical assessment of the performance of a sensor to detect crystalline biofilm formation on indwelling bladder catheters.
    Stickler DJ; Jones SM; Adusei GO; Waters MG; Cloete J; Mathur S; Feneley RC
    BJU Int; 2006 Dec; 98(6):1244-9. PubMed ID: 17026594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antifouling coating with controllable and sustained silver release for long-term inhibition of infection and encrustation in urinary catheters.
    Wang R; Neoh KG; Kang ET; Tambyah PA; Chiong E
    J Biomed Mater Res B Appl Biomater; 2015 Apr; 103(3):519-28. PubMed ID: 24922113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a poly(vinyl pyrollidone)-coated biomaterial for urological use.
    Tunney MM; Gorman SP
    Biomaterials; 2002 Dec; 23(23):4601-8. PubMed ID: 12322981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonfouling biomaterials based on polyethylene oxide-containing amphiphilic triblock copolymers as surface modifying additives: protein adsorption on PEO-copolymer/polyurethane blends.
    Tan J; McClung WG; Brash JL
    J Biomed Mater Res A; 2008 Jun; 85(4):873-80. PubMed ID: 17896776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonfouling biomaterials based on polyethylene oxide-containing amphiphilic triblock copolymers as surface modifying additives: adsorption of proteins from human plasma to copolymer/polyurethane blends.
    Tan J; Brash JL
    J Biomed Mater Res A; 2009 Jul; 90(1):196-204. PubMed ID: 18491394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A strategy for the control of catheter blockage by crystalline Proteus mirabilis biofilm using the antibacterial agent triclosan.
    Jones GL; Russell AD; Caliskan Z; Stickler DJ
    Eur Urol; 2005 Nov; 48(5):838-45. PubMed ID: 16126323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of EDTA instillations on the rate of development of encrustation and biofilms in Foley catheters.
    Percival SL; Sabbuba NA; Kite P; Stickler DJ
    Urol Res; 2009 Aug; 37(4):205-9. PubMed ID: 19468723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The migration of Proteus mirabilis and other urinary tract pathogens over Foley catheters.
    Sabbuba N; Hughes G; Stickler DJ
    BJU Int; 2002 Jan; 89(1):55-60. PubMed ID: 11849161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-vitro antibacterial and anti-encrustation performance of silver-polytetrafluoroethylene nanocomposite coated urinary catheters.
    Wang L; Zhang S; Keatch R; Corner G; Nabi G; Murdoch S; Davidson F; Zhao Q
    J Hosp Infect; 2019 Sep; 103(1):55-63. PubMed ID: 30802524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observations on the development of the crystalline bacterial biofilms that encrust and block Foley catheters.
    Stickler DJ; Morgan SD
    J Hosp Infect; 2008 Aug; 69(4):350-60. PubMed ID: 18550219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.