These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 12162434)

  • 1. Reactive oxygen species in choline deficiency induced carcinogenesis and nitrone inhibition.
    Floyd RA; Kotake Y; Hensley K; Nakae D; Konishi Y
    Mol Cell Biochem; 2002; 234-235(1-2):195-203. PubMed ID: 12162434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of phenyl N-tert-butyl nitrone and its derivatives on the early phase of hepatocarcinogenesis in rats fed a choline-deficient, L-amino acid-defined diet.
    Nakae D; Kishida H; Enami T; Konishi Y; Hensley KL; Floyd RA; Kotake Y
    Cancer Sci; 2003 Jan; 94(1):26-31. PubMed ID: 12708470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition by phenyl N-tert-butyl nitrone of early phase carcinogenesis in the livers of rats fed a choline-deficient, L-amino acid-defined diet.
    Nakae D; Kotake Y; Kishida H; Hensley KL; Denda A; Kobayashi Y; Kitayama W; Tsujiuchi T; Sang H; Stewart CA; Tabatabaie T; Floyd RA; Konishi Y
    Cancer Res; 1998 Oct; 58(20):4548-51. PubMed ID: 9788598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of the development of hepatocellular carcinomas by phenyl N-tert-butyl nitrone in rats fed with a choline-deficient, L-amino acid-defined diet.
    Nakae D; Uematsu F; Kishida H; Kusuoka O; Katsuda S; Yoshida M; Takahashi M; Maekawa A; Denda A; Konishi Y; Kotake Y; Floyd RA
    Cancer Lett; 2004 Mar; 206(1):1-13. PubMed ID: 15019154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of neuroprotective effects induced by alpha-phenyl-N-tert-butyl nitrone (PBN) and N-tert-butyl-alpha-(2 sulfophenyl) nitrone (S-PBN) in lithium-pilocarpine status epilepticus.
    Peterson SL; Purvis RS; Griffith JW
    Neurotoxicology; 2005 Dec; 26(6):969-79. PubMed ID: 15890407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of alpha-phenyl-N-tert-butyl nitrone and alternative electron acceptors with complex I indicates a substrate reduction site upstream from the rotenone binding site.
    Hensley K; Pye QN; Maidt ML; Stewart CA; Robinson KA; Jaffrey F; Floyd RA
    J Neurochem; 1998 Dec; 71(6):2549-57. PubMed ID: 9832155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of Fas-FasL related apoptosis by PBN in the early phases of choline deficient diet-mediated hepatocarcinogenesis in rats.
    Inoue Y; Asanuma T; Smith N; Saunders D; Oblander J; Kotake Y; Floyd RA; Towner RA
    Free Radic Res; 2007 Sep; 41(9):972-80. PubMed ID: 17729114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free radical scavenger posttreatment improves functional and morphological outcome after fluid percussion injury in the rat.
    Marklund N; Clausen F; McIntosh TK; Hillered L
    J Neurotrauma; 2001 Aug; 18(8):821-32. PubMed ID: 11526988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuroprotection by 2-h postischemia administration of two free radical scavengers, alpha-phenyl-n-tert-butyl-nitrone (PBN) and N-tert-butyl-(2-sulfophenyl)-nitrone (S-PBN), in rats subjected to focal embolic cerebral ischemia.
    Yang Y; Li Q; Shuaib A
    Exp Neurol; 2000 May; 163(1):39-45. PubMed ID: 10785442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the nitrone radical scavengers PBN and S-PBN on in vivo trapping of reactive oxygen species after traumatic brain injury in rats.
    Marklund N; Lewander T; Clausen F; Hillered L
    J Cereb Blood Flow Metab; 2001 Nov; 21(11):1259-67. PubMed ID: 11702041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of traumatic brain injury and nitrone radical scavengers on relative changes in regional cerebral blood flow and glucose uptake in rats.
    Marklund N; Sihver S; Långström B; Bergström M; Hillered L
    J Neurotrauma; 2002 Oct; 19(10):1139-53. PubMed ID: 12427324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-cancer activity of nitrones and observations on mechanism of action.
    Floyd RA; Chandru HK; He T; Towner R
    Anticancer Agents Med Chem; 2011 May; 11(4):373-9. PubMed ID: 21651461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the spin trap-alpha-phenyl-N-tert-butyl nitrone (PBN) in transient forebrain ischaemia in the rat.
    Pahlmark K; Siesjö BK
    Acta Physiol Scand; 1996 May; 157(1):41-51. PubMed ID: 8735653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased production of reactive oxygen species by rat liver mitochondria after chronic ethanol treatment.
    Kukiełka E; Dicker E; Cederbaum AI
    Arch Biochem Biophys; 1994 Mar; 309(2):377-86. PubMed ID: 8135551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probable free radical effects on rat liver nuclei during early hepatocarcinogenesis with a choline-devoid low methionine diet.
    Rushmore TH; Ghazarian DM; Subrahmanyan V; Farber E; Ghoshal AK
    Cancer Res; 1987 Dec; 47(24 Pt 1):6731-40. PubMed ID: 3677103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox-sensitive protein phosphatase activity regulates the phosphorylation state of p38 protein kinase in primary astrocyte culture.
    Robinson KA; Stewart CA; Pye QN; Nguyen X; Kenney L; Salzman S; Floyd RA; Hensley K
    J Neurosci Res; 1999 Mar; 55(6):724-32. PubMed ID: 10220113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrones, their value as therapeutics and probes to understand aging.
    Floyd RA; Hensley K; Forster MJ; Kelleher-Andersson JA; Wood PL
    Mech Ageing Dev; 2002 Apr; 123(8):1021-31. PubMed ID: 12044951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paradoxical increase in 3-nitropropionic acid neurotoxicity by alpha-phenyl-tert-butyl-nitrone, a spin-trapping agent.
    Lan MY; Chang YY; Chen SS; Wu HS; Chen WH; Liu JS
    Chang Gung Med J; 2005 Feb; 28(2):77-84. PubMed ID: 15880982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dietary choline restriction causes complex I dysfunction and increased H(2)O(2) generation in liver mitochondria.
    Hensley K; Kotake Y; Sang H; Pye QN; Wallis GL; Kolker LM; Tabatabaie T; Stewart CA; Konishi Y; Nakae D; Floyd RA
    Carcinogenesis; 2000 May; 21(5):983-9. PubMed ID: 10783322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacologic properties of phenyl N-tert-butylnitrone.
    Kotake Y
    Antioxid Redox Signal; 1999; 1(4):481-99. PubMed ID: 11233146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.