BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 12162508)

  • 1. Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts.
    Robling AG; Hinant FM; Burr DB; Turner CH
    J Bone Miner Res; 2002 Aug; 17(8):1545-54. PubMed ID: 12162508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partitioning a daily mechanical stimulus into discrete loading bouts improves the osteogenic response to loading.
    Robling AG; Burr DB; Turner CH
    J Bone Miner Res; 2000 Aug; 15(8):1596-602. PubMed ID: 10934659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanosensitivity of the rat skeleton decreases after a long period of loading, but is improved with time off.
    Saxon LK; Robling AG; Alam I; Turner CH
    Bone; 2005 Mar; 36(3):454-64. PubMed ID: 15777679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone adaptation to a mechanical loading program significantly increases skeletal fatigue resistance.
    Warden SJ; Hurst JA; Sanders MS; Turner CH; Burr DB; Li J
    J Bone Miner Res; 2005 May; 20(5):809-16. PubMed ID: 15824854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo fatigue loading of the rat ulna induces both bone formation and resorption and leads to time-related changes in bone mechanical properties and density.
    Hsieh YF; Silva MJ
    J Orthop Res; 2002 Jul; 20(4):764-71. PubMed ID: 12168665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shorter, more frequent mechanical loading sessions enhance bone mass.
    Robling AG; Hinant FM; Burr DB; Turner CH
    Med Sci Sports Exerc; 2002 Feb; 34(2):196-202. PubMed ID: 11828225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response of the osteocyte syncytium adjacent to and distant from linear microcracks during adaptation to cyclic fatigue loading.
    Colopy SA; Benz-Dean J; Barrett JG; Sample SJ; Lu Y; Danova NA; Kalscheur VL; Vanderby R; Markel MD; Muir P
    Bone; 2004 Oct; 35(4):881-91. PubMed ID: 15454095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The skeletal responsiveness to mechanical loading is enhanced in mice with a null mutation in estrogen receptor-beta.
    Saxon LK; Robling AG; Castillo AB; Mohan S; Turner CH
    Am J Physiol Endocrinol Metab; 2007 Aug; 293(2):E484-91. PubMed ID: 17535856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exercise when young provides lifelong benefits to bone structure and strength.
    Warden SJ; Fuchs RK; Castillo AB; Nelson IR; Turner CH
    J Bone Miner Res; 2007 Feb; 22(2):251-9. PubMed ID: 17129172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The establishment of a new mechanobiology model of bone and functional adaptation studies in vivo].
    Chen XY; Zhang XZ; Zhang YL; Zhang CQ; Zhao HB; Zhang YH; Mao Y
    Zhonghua Yi Xue Za Zhi; 2007 May; 87(17):1160-4. PubMed ID: 17686232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone formation after damaging in vivo fatigue loading results in recovery of whole-bone monotonic strength and increased fatigue life.
    Silva MJ; Touhey DC
    J Orthop Res; 2007 Feb; 25(2):252-61. PubMed ID: 17106875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical loading of diaphyseal bone in vivo: the strain threshold for an osteogenic response varies with location.
    Hsieh YF; Robling AG; Ambrosius WT; Burr DB; Turner CH
    J Bone Miner Res; 2001 Dec; 16(12):2291-7. PubMed ID: 11760844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a bone's in vivo 24-hour loading history for physical exercise compared with background loading.
    Konieczynski DD; Truty MJ; Biewener AA
    J Orthop Res; 1998 Jan; 16(1):29-37. PubMed ID: 9565070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trabecular bone response to mechanical and parathyroid hormone stimulation: the role of mechanical microenvironment.
    Kim CH; Takai E; Zhou H; von Stechow D; Müller R; Dempster DW; Guo XE
    J Bone Miner Res; 2003 Dec; 18(12):2116-25. PubMed ID: 14672346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The establishment of a mechanobiology model of bone and functional adaptation in response to mechanical loading.
    Chen XY; Zhang XZ; Guo Y; Li RX; Lin JJ; Wei Y
    Clin Biomech (Bristol, Avon); 2008; 23 Suppl 1():S88-95. PubMed ID: 18448217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site specific bone adaptation response to mechanical loading.
    Kuruvilla SJ; Fox SD; Cullen DM; Akhter MP
    J Musculoskelet Neuronal Interact; 2008; 8(1):71-8. PubMed ID: 18398268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of loading frequency on mechanically induced bone formation.
    Hsieh YF; Turner CH
    J Bone Miner Res; 2001 May; 16(5):918-24. PubMed ID: 11341337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-dose estrogen treatment suppresses periosteal bone formation in response to mechanical loading.
    Saxon LK; Turner CH
    Bone; 2006 Dec; 39(6):1261-7. PubMed ID: 16934543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of fatigue loading and associated matrix microdamage on bone blood flow and interstitial fluid flow.
    Muir P; Sample SJ; Barrett JG; McCarthy J; Vanderby R; Markel MD; Prokuski LJ; Kalscheur VL
    Bone; 2007 Apr; 40(4):948-56. PubMed ID: 17234467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanotransduction in the cortical bone is most efficient at loading frequencies of 5-10 Hz.
    Warden SJ; Turner CH
    Bone; 2004 Feb; 34(2):261-70. PubMed ID: 14962804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.