BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 12162740)

  • 1. A conserved Tyr residue is required for sugar selectivity in a Pol alpha DNA polymerase.
    Yang G; Franklin M; Li J; Lin TC; Konigsberg W
    Biochemistry; 2002 Aug; 41(32):10256-61. PubMed ID: 12162740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Base selectivity is impaired by mutants that perturb hydrogen bonding networks in the RB69 DNA polymerase active site.
    Yang G; Wang J; Konigsberg W
    Biochemistry; 2005 Mar; 44(9):3338-46. PubMed ID: 15736944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steady-state kinetic characterization of RB69 DNA polymerase mutants that affect dNTP incorporation.
    Yang G; Lin T; Karam J; Konigsberg WH
    Biochemistry; 1999 Jun; 38(25):8094-101. PubMed ID: 10387055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3'-5' Exonucleolytic activity of DNA polymerases: structural features that allow kinetic discrimination between ribo- and deoxyribonucleotide residues.
    Lin TC; Wang CX; Joyce CM; Konigsberg WH
    Biochemistry; 2001 Jul; 40(30):8749-55. PubMed ID: 11467934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pre-steady-state kinetics of RB69 DNA polymerase and its exo domain mutants: effect of pH and thiophosphoryl linkages on 3'-5' exonuclease activity.
    Wang CX; Zakharova E; Li J; Joyce CM; Wang J; Konigsberg W
    Biochemistry; 2004 Apr; 43(13):3853-61. PubMed ID: 15049692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation of the kinetics of finger domain mutants in RB69 DNA polymerase with its structure.
    Yang G; Franklin M; Li J; Lin TC; Konigsberg W
    Biochemistry; 2002 Feb; 41(8):2526-34. PubMed ID: 11851399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic mechanisms governing stable ribonucleotide incorporation in individual DNA polymerase complexes.
    Dahl JM; Wang H; Lázaro JM; Salas M; Lieberman KR
    Biochemistry; 2014 Dec; 53(51):8061-76. PubMed ID: 25478721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of nucleotide insertion and extension at 8-oxo-7,8-dihydroguanine by replicative T7 polymerase exo- and human immunodeficiency virus-1 reverse transcriptase using steady-state and pre-steady-state kinetics.
    Furge LL; Guengerich FP
    Biochemistry; 1997 May; 36(21):6475-87. PubMed ID: 9174365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pre-steady-state kinetic studies of the fidelity of human DNA polymerase mu.
    Roettger MP; Fiala KA; Sompalli S; Dong Y; Suo Z
    Biochemistry; 2004 Nov; 43(43):13827-38. PubMed ID: 15504045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steady-state and pre-steady-state kinetic analysis of dNTP insertion opposite 8-oxo-7,8-dihydroguanine by Escherichia coli polymerases I exo- and II exo-.
    Lowe LG; Guengerich FP
    Biochemistry; 1996 Jul; 35(30):9840-9. PubMed ID: 8703958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exonuclease-polymerase active site partitioning of primer-template DNA strands and equilibrium Mg2+ binding properties of bacteriophage T4 DNA polymerase.
    Beechem JM; Otto MR; Bloom LB; Eritja R; Reha-Krantz LJ; Goodman MF
    Biochemistry; 1998 Jul; 37(28):10144-55. PubMed ID: 9665720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic studies comparing the incorporation of (+) and (-) isomers of 3TCTP by HIV-1 reverse transcriptase.
    Feng JY; Anderson KS
    Biochemistry; 1999 Jan; 38(1):55-63. PubMed ID: 9890882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional consequences and exonuclease kinetic parameters of point mutations in bacteriophage T4 DNA polymerase.
    Abdus Sattar AK; Lin TC; Jones C; Konigsberg WH
    Biochemistry; 1996 Dec; 35(51):16621-9. PubMed ID: 8987997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP.
    Pelletier H; Sawaya MR; Kumar A; Wilson SH; Kraut J
    Science; 1994 Jun; 264(5167):1891-903. PubMed ID: 7516580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steric gate residues of Y-family DNA polymerases DinB and pol kappa are crucial for dNTP-induced conformational change.
    Nevin P; Engen JR; Beuning PJ
    DNA Repair (Amst); 2015 May; 29():65-73. PubMed ID: 25684709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structures of a ddATP-, ddTTP-, ddCTP, and ddGTP- trapped ternary complex of Klentaq1: insights into nucleotide incorporation and selectivity.
    Li Y; Waksman G
    Protein Sci; 2001 Jun; 10(6):1225-33. PubMed ID: 11369861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How E. coli DNA polymerase I (Klenow fragment) distinguishes between deoxy- and dideoxynucleotides.
    Astatke M; Grindley ND; Joyce CM
    J Mol Biol; 1998 Apr; 278(1):147-65. PubMed ID: 9571040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic and Structural Impact of Metal Ions and Genetic Variations on Human DNA Polymerase ι.
    Choi JY; Patra A; Yeom M; Lee YS; Zhang Q; Egli M; Guengerich FP
    J Biol Chem; 2016 Sep; 291(40):21063-21073. PubMed ID: 27555320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A single tyrosine prevents insertion of ribonucleotides in the eukaryotic-type phi29 DNA polymerase.
    Bonnin A; Lázaro JM; Blanco L; Salas M
    J Mol Biol; 1999 Jul; 290(1):241-51. PubMed ID: 10388570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA polymerase of the T4-related bacteriophages.
    Karam JD; Konigsberg WH
    Prog Nucleic Acid Res Mol Biol; 2000; 64():65-96. PubMed ID: 10697407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.