BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 12162744)

  • 1. The roles of thiols in the bacterial organomercurial lyase (MerB).
    Pitts KE; Summers AO
    Biochemistry; 2002 Aug; 41(32):10287-96. PubMed ID: 12162744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR structural studies reveal a novel protein fold for MerB, the organomercurial lyase involved in the bacterial mercury resistance system.
    Di Lello P; Benison GC; Valafar H; Pitts KE; Summers AO; Legault P; Omichinski JG
    Biochemistry; 2004 Jul; 43(26):8322-32. PubMed ID: 15222745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and Biochemical Characterization of a Copper-Binding Mutant of the Organomercurial Lyase MerB: Insight into the Key Role of the Active Site Aspartic Acid in Hg-Carbon Bond Cleavage and Metal Binding Specificity.
    Wahba HM; Lecoq L; Stevenson M; Mansour A; Cappadocia L; Lafrance-Vanasse J; Wilkinson KJ; Sygusch J; Wilcox DE; Omichinski JG
    Biochemistry; 2016 Feb; 55(7):1070-81. PubMed ID: 26820485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A stable mercury-containing complex of the organomercurial lyase MerB: catalysis, product release, and direct transfer to MerA.
    Benison GC; Di Lello P; Shokes JE; Cosper NJ; Scott RA; Legault P; Omichinski JG
    Biochemistry; 2004 Jul; 43(26):8333-45. PubMed ID: 15222746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of Hg-C protonolysis in the organomercurial lyase MerB.
    Parks JM; Guo H; Momany C; Liang L; Miller SM; Summers AO; Smith JC
    J Am Chem Soc; 2009 Sep; 131(37):13278-85. PubMed ID: 19719173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic studies on CDP-6-deoxy-delta 3,4-glucoseen reductase: the role of cysteine residues in catalysis as probed by chemical modification and site-directed mutagenesis.
    Ploux O; Lei Y; Vatanen K; Liu HW
    Biochemistry; 1995 Apr; 34(13):4159-68. PubMed ID: 7703227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structures of the organomercurial lyase MerB in its free and mercury-bound forms: insights into the mechanism of methylmercury degradation.
    Lafrance-Vanasse J; Lefebvre M; Di Lello P; Sygusch J; Omichinski JG
    J Biol Chem; 2009 Jan; 284(2):938-44. PubMed ID: 19004822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hg-C bond protonolysis by a functional model of bacterial enzyme organomercurial lyase MerB.
    Karri R; Das R; Rai RK; Gopalakrishnan A; Roy G
    Chem Commun (Camb); 2020 Aug; 56(65):9280-9283. PubMed ID: 32558833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Essential cysteines in 3-deoxy-D-manno-octulosonic acid 8-phosphate synthase from Escherichia coli: analysis by chemical modification and site-directed mutagenesis.
    Salleh HM; Patel MA; Woodard RW
    Biochemistry; 1996 Jul; 35(27):8942-7. PubMed ID: 8688430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular cloning and genetic analysis of functional merB gene from indian isolates of Escherichia coli.
    Murtaza I; Dutt A; Mushtaq D; Ali A
    Curr Microbiol; 2005 Nov; 51(5):297-302. PubMed ID: 16211434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct measurement of mercury(II) removal from organomercurial lyase (MerB) by tryptophan fluorescence: NmerA domain of coevolved γ-proteobacterial mercuric ion reductase (MerA) is more efficient than MerA catalytic core or glutathione .
    Hong B; Nauss R; Harwood IM; Miller SM
    Biochemistry; 2010 Sep; 49(37):8187-96. PubMed ID: 20722420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cleaving mercury-alkyl bonds: a functional model for mercury detoxification by MerB.
    Melnick JG; Parkin G
    Science; 2007 Jul; 317(5835):225-7. PubMed ID: 17626880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of cysteine residues on the activity of arginyl-tRNA synthetase from Escherichia coli.
    Liu M; Huang Y; Wu J; Wang E; Wang Y
    Biochemistry; 1999 Aug; 38(34):11006-11. PubMed ID: 10460155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic pathways of mercury removal from the organomercurial lyase active site.
    Silva PJ; Rodrigues V
    PeerJ; 2015; 3():e1127. PubMed ID: 26246970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inactivation of a cytosolic phospholipase A2 by thiol-modifying reagents: cysteine residues as potential targets of phospholipase A2.
    Li B; Copp L; Castelhano AL; Feng R; Stahl M; Yuan Z; Krantz A
    Biochemistry; 1994 Jul; 33(28):8594-603. PubMed ID: 8031794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free thiols of platelet thrombospondin. Evidence for disulfide isomerization.
    Speziale MV; Detwiler TC
    J Biol Chem; 1990 Oct; 265(29):17859-67. PubMed ID: 2211666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial organomercurial lyase: overproduction, isolation, and characterization.
    Begley TP; Walts AE; Walsh CT
    Biochemistry; 1986 Nov; 25(22):7186-92. PubMed ID: 3542021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of cysteine residues in 4-oxalomesaconate hydratase from Pseudomonas ochraceae NGJ1.
    Li S; Kimura M; Takashima T; Hayashi K; Inoue K; Ishiguro R; Sugisaki H; Maruyama K
    Biosci Biotechnol Biochem; 2007 Feb; 71(2):449-57. PubMed ID: 17284837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification of cysteine residues in the ChlI and ChlH subunits of magnesium chelatase results in enzyme inactivation.
    Jensen PE; Reid JD; Hunter CN
    Biochem J; 2000 Dec; 352 Pt 2(Pt 2):435-41. PubMed ID: 11085937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. beta-Cystathionase from Bordetella avium. Role(s) of lysine 214 and cysteine residues in activity and cytotoxicity.
    Gentry-Weeks CR; Spokes J; Thompson J
    J Biol Chem; 1995 Mar; 270(13):7695-702. PubMed ID: 7706318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.