These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 12162744)
1. The roles of thiols in the bacterial organomercurial lyase (MerB). Pitts KE; Summers AO Biochemistry; 2002 Aug; 41(32):10287-96. PubMed ID: 12162744 [TBL] [Abstract][Full Text] [Related]
2. NMR structural studies reveal a novel protein fold for MerB, the organomercurial lyase involved in the bacterial mercury resistance system. Di Lello P; Benison GC; Valafar H; Pitts KE; Summers AO; Legault P; Omichinski JG Biochemistry; 2004 Jul; 43(26):8322-32. PubMed ID: 15222745 [TBL] [Abstract][Full Text] [Related]
3. Structural and Biochemical Characterization of a Copper-Binding Mutant of the Organomercurial Lyase MerB: Insight into the Key Role of the Active Site Aspartic Acid in Hg-Carbon Bond Cleavage and Metal Binding Specificity. Wahba HM; Lecoq L; Stevenson M; Mansour A; Cappadocia L; Lafrance-Vanasse J; Wilkinson KJ; Sygusch J; Wilcox DE; Omichinski JG Biochemistry; 2016 Feb; 55(7):1070-81. PubMed ID: 26820485 [TBL] [Abstract][Full Text] [Related]
4. A stable mercury-containing complex of the organomercurial lyase MerB: catalysis, product release, and direct transfer to MerA. Benison GC; Di Lello P; Shokes JE; Cosper NJ; Scott RA; Legault P; Omichinski JG Biochemistry; 2004 Jul; 43(26):8333-45. PubMed ID: 15222746 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of Hg-C protonolysis in the organomercurial lyase MerB. Parks JM; Guo H; Momany C; Liang L; Miller SM; Summers AO; Smith JC J Am Chem Soc; 2009 Sep; 131(37):13278-85. PubMed ID: 19719173 [TBL] [Abstract][Full Text] [Related]
6. Mechanistic studies on CDP-6-deoxy-delta 3,4-glucoseen reductase: the role of cysteine residues in catalysis as probed by chemical modification and site-directed mutagenesis. Ploux O; Lei Y; Vatanen K; Liu HW Biochemistry; 1995 Apr; 34(13):4159-68. PubMed ID: 7703227 [TBL] [Abstract][Full Text] [Related]
7. Crystal structures of the organomercurial lyase MerB in its free and mercury-bound forms: insights into the mechanism of methylmercury degradation. Lafrance-Vanasse J; Lefebvre M; Di Lello P; Sygusch J; Omichinski JG J Biol Chem; 2009 Jan; 284(2):938-44. PubMed ID: 19004822 [TBL] [Abstract][Full Text] [Related]
8. Hg-C bond protonolysis by a functional model of bacterial enzyme organomercurial lyase MerB. Karri R; Das R; Rai RK; Gopalakrishnan A; Roy G Chem Commun (Camb); 2020 Aug; 56(65):9280-9283. PubMed ID: 32558833 [TBL] [Abstract][Full Text] [Related]
9. Essential cysteines in 3-deoxy-D-manno-octulosonic acid 8-phosphate synthase from Escherichia coli: analysis by chemical modification and site-directed mutagenesis. Salleh HM; Patel MA; Woodard RW Biochemistry; 1996 Jul; 35(27):8942-7. PubMed ID: 8688430 [TBL] [Abstract][Full Text] [Related]
10. Molecular cloning and genetic analysis of functional merB gene from indian isolates of Escherichia coli. Murtaza I; Dutt A; Mushtaq D; Ali A Curr Microbiol; 2005 Nov; 51(5):297-302. PubMed ID: 16211434 [TBL] [Abstract][Full Text] [Related]
11. Direct measurement of mercury(II) removal from organomercurial lyase (MerB) by tryptophan fluorescence: NmerA domain of coevolved γ-proteobacterial mercuric ion reductase (MerA) is more efficient than MerA catalytic core or glutathione . Hong B; Nauss R; Harwood IM; Miller SM Biochemistry; 2010 Sep; 49(37):8187-96. PubMed ID: 20722420 [TBL] [Abstract][Full Text] [Related]
12. Cleaving mercury-alkyl bonds: a functional model for mercury detoxification by MerB. Melnick JG; Parkin G Science; 2007 Jul; 317(5835):225-7. PubMed ID: 17626880 [TBL] [Abstract][Full Text] [Related]
13. Effect of cysteine residues on the activity of arginyl-tRNA synthetase from Escherichia coli. Liu M; Huang Y; Wu J; Wang E; Wang Y Biochemistry; 1999 Aug; 38(34):11006-11. PubMed ID: 10460155 [TBL] [Abstract][Full Text] [Related]
14. Mechanistic pathways of mercury removal from the organomercurial lyase active site. Silva PJ; Rodrigues V PeerJ; 2015; 3():e1127. PubMed ID: 26246970 [TBL] [Abstract][Full Text] [Related]
15. Inactivation of a cytosolic phospholipase A2 by thiol-modifying reagents: cysteine residues as potential targets of phospholipase A2. Li B; Copp L; Castelhano AL; Feng R; Stahl M; Yuan Z; Krantz A Biochemistry; 1994 Jul; 33(28):8594-603. PubMed ID: 8031794 [TBL] [Abstract][Full Text] [Related]