These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 12163312)

  • 1. The influence of out-of-plane geometry on pulsatile flow within a distal end-to-side anastomosis.
    Papaharilaou Y; Doorly DJ; Sherwin SJ
    J Biomech; 2002 Sep; 35(9):1225-39. PubMed ID: 12163312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of out-of-plane geometry on the flow within a distal end-to-side anastomosis.
    Sherwin SJ; Shah O; Doorly DJ; Peiró J; Papaharilaou Y; Watkins N; Caro CG; Dumoulin CL
    J Biomech Eng; 2000 Feb; 122(1):86-95. PubMed ID: 10790834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compliance and diameter mismatch affect the wall shear rate distribution near an end-to-end anastomosis.
    Weston MW; Rhee K; Tarbell JM
    J Biomech; 1996 Feb; 29(2):187-98. PubMed ID: 8849812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational design of a bypass graft that minimizes wall shear stress gradients in the region of the distal anastomosis.
    Lei M; Archie JP; Kleinstreuer C
    J Vasc Surg; 1997 Apr; 25(4):637-46. PubMed ID: 9129618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of angle on wall shear stresses in a LIMA to LAD anastomosis: numerical modelling of pulsatile flow.
    Freshwater IJ; Morsi YS; Lai T
    Proc Inst Mech Eng H; 2006 Oct; 220(7):743-57. PubMed ID: 17117764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood flow in stented arteries: a parametric comparison of strut design patterns in three dimensions.
    He Y; Duraiswamy N; Frank AO; Moore JE
    J Biomech Eng; 2005 Aug; 127(4):637-47. PubMed ID: 16121534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulsatile flow in an end-to-side vascular graft model: comparison of computations with experimental data.
    Lei M; Giddens DP; Jones SA; Loth F; Bassiouny H
    J Biomech Eng; 2001 Feb; 123(1):80-7. PubMed ID: 11277306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical study on the pulsatile flow characteristics of proximal anastomotic models.
    Chua LP; Zhang JM; Yu SC; Ghista DN; Tan YS
    Proc Inst Mech Eng H; 2005 Sep; 219(5):361-79. PubMed ID: 16225153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial and temporal variations of wall shear stress within an end-to-side arterial anastomosis model.
    Ojha M
    J Biomech; 1993 Dec; 26(12):1377-88. PubMed ID: 8308043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical study of wall mechanics and fluid dynamics in end-to-side anastomoses and correlation to intimal hyperplasia.
    Hofer M; Rappitsch G; Perktold K; Trubel W; Schima H
    J Biomech; 1996 Oct; 29(10):1297-308. PubMed ID: 8884475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemodynamic factors at the distal end-to-side anastomosis of a bypass graft with different POS:DOS flow ratios.
    Li XM; Rittgers SE
    J Biomech Eng; 2001 Jun; 123(3):270-6. PubMed ID: 11476371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A numerical study of blood flow in coronary artery bypass graft side-to-side anastomoses.
    Bonert M; Myers JG; Fremes S; Williams J; Ethier CR
    Ann Biomed Eng; 2002 May; 30(5):599-611. PubMed ID: 12108835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ratio of diameters between the target artery and the bypass modifies hemodynamic parameters related to intimal hyperplasia in the distal end-to-side anastomosis.
    Grus T; Lambert L; Matěcha J; Grusová G; Špaček M; Mlček M
    Physiol Res; 2016 Dec; 65(6):901-908. PubMed ID: 27539100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On using experimentally estimated wall shear stresses to validate numerically predicted results.
    Walsh M; McGloughlin T; Liepsch DW; O'Brien T; Morris L; Ansari AR
    Proc Inst Mech Eng H; 2003; 217(2):77-90. PubMed ID: 12666774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alteration of mean wall shear stress near an oscillating stagnation point.
    Hazel AL; Pedley TJ
    J Biomech Eng; 1998 Apr; 120(2):227-37. PubMed ID: 10412384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local and global geometric influence on steady flow in distal anastomoses of peripheral bypass grafts.
    Giordana S; Sherwin SJ; Peiró J; Doorly DJ; Crane JS; Lee KE; Cheshire NJ; Caro CG
    J Biomech Eng; 2005 Dec; 127(7):1087-98. PubMed ID: 16502651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurements of velocity and wall shear stress inside a PTFE vascular graft model under steady flow conditions.
    Loth F; Jones SA; Giddens DP; Bassiouny HS; Glagov S; Zarins CK
    J Biomech Eng; 1997 May; 119(2):187-94. PubMed ID: 9168395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical simulation of wall shear stress conditions and platelet localization in realistic end-to-side arterial anastomoses.
    Longest PW; Kleinstreuer C
    J Biomech Eng; 2003 Oct; 125(5):671-81. PubMed ID: 14618926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical investigation of the non-Newtonian pulsatile blood flow in a bifurcation model with a non-planar branch.
    Chen J; Lu XY
    J Biomech; 2006; 39(5):818-32. PubMed ID: 16488221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study of the wall shear rate distribution near the end-to-end anastomosis of a rigid graft and a compliant artery.
    Rhee K; Tarbell JM
    J Biomech; 1994 Mar; 27(3):329-38. PubMed ID: 8051193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.