These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 12163315)
1. The internal mechanics of the intervertebral disc under cyclic loading. Riches PE; Dhillon N; Lotz J; Woods AW; McNally DS J Biomech; 2002 Sep; 35(9):1263-71. PubMed ID: 12163315 [TBL] [Abstract][Full Text] [Related]
2. Biomechanical and fluid flowing characteristics of intervertebral disc of lumbar spine predicted by poroelastic finite element method. Guo LX; Li R; Zhang M Acta Bioeng Biomech; 2016; 18(2):19-29. PubMed ID: 27406902 [TBL] [Abstract][Full Text] [Related]
3. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads. Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332 [TBL] [Abstract][Full Text] [Related]
4. Biomechanical responses of the intervertebral joints to static and vibrational loading: a finite element study. Cheung JT; Zhang M; Chow DH Clin Biomech (Bristol); 2003 Nov; 18(9):790-9. PubMed ID: 14527805 [TBL] [Abstract][Full Text] [Related]
5. The effect of creep on human lumbar intervertebral disk impact mechanics. Jamison D; Marcolongo MS J Biomech Eng; 2014 Mar; 136(3):031006. PubMed ID: 24292391 [TBL] [Abstract][Full Text] [Related]
6. The effect of nucleotomy on lumbar spine mechanics in compression and shear loading. Frei H; Oxland TR; Rathonyi GC; Nolte LP Spine (Phila Pa 1976); 2001 Oct; 26(19):2080-9. PubMed ID: 11698883 [TBL] [Abstract][Full Text] [Related]
7. Recent advances in analytical modeling of lumbar disc degeneration. Natarajan RN; Williams JR; Andersson GB Spine (Phila Pa 1976); 2004 Dec; 29(23):2733-41. PubMed ID: 15564922 [TBL] [Abstract][Full Text] [Related]
8. Poroelastic behaviour of the degenerating human intervertebral disc: a ten-day study in a loaded disc culture system. Emanuel KS; Vergroesen PP; Peeters M; Holewijn RM; Kingma I; Smit TH Eur Cell Mater; 2015 Jun; 29():330-40; discussion 340-1. PubMed ID: 26091731 [TBL] [Abstract][Full Text] [Related]
9. Comparison of four methods to simulate swelling in poroelastic finite element models of intervertebral discs. Galbusera F; Schmidt H; Noailly J; Malandrino A; Lacroix D; Wilke HJ; Shirazi-Adl A J Mech Behav Biomed Mater; 2011 Oct; 4(7):1234-41. PubMed ID: 21783132 [TBL] [Abstract][Full Text] [Related]
10. A one-dimensional theoretical prediction of the effect of reduced end-plate permeability on the mechanics of the intervertebral disc. Riches PE; McNally DS Proc Inst Mech Eng H; 2005 Sep; 219(5):329-35. PubMed ID: 16225149 [TBL] [Abstract][Full Text] [Related]
11. Intervertebral disc mechanics are restored following cyclic loading and unloaded recovery. Johannessen W; Vresilovic EJ; Wright AC; Elliott DM Ann Biomed Eng; 2004 Jan; 32(1):70-6. PubMed ID: 14964723 [TBL] [Abstract][Full Text] [Related]
12. Refinement of elastic, poroelastic, and osmotic tissue properties of intervertebral disks to analyze behavior in compression. Stokes IA; Laible JP; Gardner-Morse MG; Costi JJ; Iatridis JC Ann Biomed Eng; 2011 Jan; 39(1):122-31. PubMed ID: 20711754 [TBL] [Abstract][Full Text] [Related]
13. Effects of swelling pressure and hydraulic permeability on dynamic compressive behavior of lumbar annulus fibrosus. Yao H; Justiz MA; Flagler D; Gu WY Ann Biomed Eng; 2002; 30(10):1234-41. PubMed ID: 12540199 [TBL] [Abstract][Full Text] [Related]
14. Patient-specific spine models. Part 1: Finite element analysis of the lumbar intervertebral disc--a material sensitivity study. Fagan MJ; Julian S; Siddall DJ; Mohsen AM Proc Inst Mech Eng H; 2002; 216(5):299-314. PubMed ID: 12365788 [TBL] [Abstract][Full Text] [Related]
15. Statistical factorial analysis on the poroelastic material properties sensitivity of the lumbar intervertebral disc under compression, flexion and axial rotation. Malandrino A; Planell JA; Lacroix D J Biomech; 2009 Dec; 42(16):2780-8. PubMed ID: 19796766 [TBL] [Abstract][Full Text] [Related]
16. Ratcheting Behavior of Intervertebral Discs Under Cyclic Compression: Experiment and Prediction. Zhang CQ; Zhang T; Gao L; Du CF; Liu Q; Liu HY; Wang X Orthop Surg; 2019 Oct; 11(5):895-902. PubMed ID: 31663289 [TBL] [Abstract][Full Text] [Related]
17. Quasi-static and dynamic properties of the intervertebral disc: experimental study and model parameter determination for the porcine lumbar motion segment. Araújo ÂR; Peixinho N; Pinho AC; Claro JC Acta Bioeng Biomech; 2015; 17(4):59-66. PubMed ID: 26900017 [TBL] [Abstract][Full Text] [Related]
18. Inclusion of regional poroelastic material properties better predicts biomechanical behavior of lumbar discs subjected to dynamic loading. Williams JR; Natarajan RN; Andersson GB J Biomech; 2007; 40(9):1981-7. PubMed ID: 17156786 [TBL] [Abstract][Full Text] [Related]
19. Computational study of the role of fluid content and flow on the lumbar disc response in cyclic compression: Replication of in vitro and in vivo conditions. Velísková P; Bashkuev M; Shirazi-Adl A; Schmidt H J Biomech; 2018 Mar; 70():16-25. PubMed ID: 29132725 [TBL] [Abstract][Full Text] [Related]
20. Influence of experimental protocols on the mechanical properties of the intervertebral disc in unconfined compression. Recuerda M; Coté SP; Villemure I; Périé D J Biomech Eng; 2011 Jul; 133(7):071006. PubMed ID: 21823745 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]