These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 12163316)

  • 1. A rheological motor model for vertebrate skeletal muscle in due consideration of non-linearity.
    Tamura Y; Saito M
    J Biomech; 2002 Sep; 35(9):1273-7. PubMed ID: 12163316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new motor model representing the stretch-induced force enhancement and shortening-induced force depression in skeletal muscle.
    Tamura Y; Saito M; Nagato R
    J Biomech; 2005 Apr; 38(4):877-84. PubMed ID: 15713309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model of muscle contraction based on the Langevin equation with actomyosin potentials.
    Tamura Y; Ito A; Saito M
    Comput Methods Biomech Biomed Engin; 2017 Feb; 20(3):273-283. PubMed ID: 27472485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can a rheological muscle model predict force depression/enhancement?
    Forcinito M; Epstein M; Herzog W
    J Biomech; 1998 Dec; 31(12):1093-9. PubMed ID: 9882041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active finite element analysis of skeletal muscle-tendon complex during isometric, shortening and lengthening contraction.
    Tsui CP; Tang CY; Leung CP; Cheng KW; Ng YF; Chow DH; Li CK
    Biomed Mater Eng; 2004; 14(3):271-9. PubMed ID: 15299239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of damped passive recoil to the measured shortening velocity of skinned rabbit and sheep muscle fibres.
    Seow CY; Ford LE
    J Muscle Res Cell Motil; 1992 Jun; 13(3):295-307. PubMed ID: 1527216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency domain-based models of skeletal muscle.
    Baratta RV; Solomonow M; Zhou BH
    J Electromyogr Kinesiol; 1998 Apr; 8(2):79-91. PubMed ID: 9680948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-contraction and passive forces facilitate load compensation of aimed limb movements.
    Zakotnik J; Matheson T; Dürr V
    J Neurosci; 2006 May; 26(19):4995-5007. PubMed ID: 16687491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in the maximum speed of shortening of frog muscle fibres early in a tetanic contraction and during relaxation.
    Josephson RK; Edman KA
    J Physiol; 1998 Mar; 507 ( Pt 2)(Pt 2):511-25. PubMed ID: 9518709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The phenomenological model of muscle contraction with a controller to simulate the excitation-contraction (E-C) coupling.
    Tamura Y; Saito M; Ito A
    J Biomech; 2009 Feb; 42(3):400-3. PubMed ID: 19147146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the tension responses to ramp shortening and lengthening in intact mammalian muscle fibres: crossbridge and non-crossbridge contributions.
    Roots H; Offer GW; Ranatunga KW
    J Muscle Res Cell Motil; 2007; 28(2-3):123-39. PubMed ID: 17610136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A constitutive model for smooth muscle including active tone and passive viscoelastic behaviour.
    Kroon M
    Math Med Biol; 2010 Jun; 27(2):129-55. PubMed ID: 19592484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hill muscle model errors during movement are greatest within the physiologically relevant range of motor unit firing rates.
    Perreault EJ; Heckman CJ; Sandercock TG
    J Biomech; 2003 Feb; 36(2):211-8. PubMed ID: 12547358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Models of skeletal muscle to explain the increase in passive stiffness in desmin knockout muscle.
    Anderson J; Li Z; Goubel F
    J Biomech; 2002 Oct; 35(10):1315-24. PubMed ID: 12231277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical model for isometric and isotonic muscle contractions.
    De Vita R; Grange R; Nardinocchi P; Teresi L
    J Theor Biol; 2017 Jul; 425():1-10. PubMed ID: 28483567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationships between isometric and isotonic mechanical parameters and cross-bridge kinetics.
    Rossmanith GH; Tjokorda OB
    Clin Exp Pharmacol Physiol; 1998; 25(7-8):522-35. PubMed ID: 9673423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the dynamic characteristics of pneumatic muscle.
    Reynolds DB; Repperger DW; Phillips CA; Bandry G
    Ann Biomed Eng; 2003 Mar; 31(3):310-7. PubMed ID: 12680728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element model of intramuscular pressure during isometric contraction of skeletal muscle.
    Jenkyn TR; Koopman B; Huijing P; Lieber RL; Kaufman KR
    Phys Med Biol; 2002 Nov; 47(22):4043-61. PubMed ID: 12476981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple Hill element-nonlinear spring model of muscle contraction biomechanics.
    Schultz AB; Faulkner JA; Kadhiresan VA
    J Appl Physiol (1985); 1991 Feb; 70(2):803-12. PubMed ID: 2022572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Storage and release of mechanical energy by contracting frog muscle fibres.
    Cavagna GA; Heglund NC; Harry JD; Mantovani M
    J Physiol; 1994 Dec; 481 ( Pt 3)(Pt 3):689-708. PubMed ID: 7707236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.