These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 12163317)

  • 41. Three-dimensional joint co-ordination strategies of the upper limb during functional activities.
    Barker TM; Nicol AC; Kelly IG; Paul JP
    Proc Inst Mech Eng H; 1996; 210(1):17-26. PubMed ID: 8663889
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spatial kinematic analysis of the upper extremity using a biplanar videotaping method.
    Langrana NA
    J Biomech Eng; 1981 Feb; 103(1):11-7. PubMed ID: 7253607
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biomechanical analysis of the strike motion in ice-climbing activity.
    Robert T; Rouard A; Seifert L
    Comput Methods Biomech Biomed Engin; 2013; 16 Suppl 1():90-2. PubMed ID: 23923863
    [No Abstract]   [Full Text] [Related]  

  • 44. The reliability of the ELEPAP clinical protocol for the 3D kinematic evaluation of upper limb function.
    Vanezis A; Robinson MA; Darras N
    Gait Posture; 2015 Feb; 41(2):431-9. PubMed ID: 25534948
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of geometric joint constraints on the selection of final arm posture during reaching: a simulation study.
    Kamper DG; Zev Rymer W
    Exp Brain Res; 1999 May; 126(1):134-8. PubMed ID: 10333014
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Prescribing joint co-ordinates during model preparation to improve inverse kinematic estimates of elbow joint angles.
    Wells DJ; Alderson JA; Dunne J; Elliott BC; Donnelly CJ
    J Biomech; 2017 Jan; 51():111-117. PubMed ID: 27939351
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of joint constraints on lower limb kinematics estimation from skin markers using global optimization.
    Duprey S; Cheze L; Dumas R
    J Biomech; 2010 Oct; 43(14):2858-62. PubMed ID: 20701914
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Utilization and compensation of interaction torques during ball-throwing movements.
    Hirashima M; Kudo K; Ohtsuki T
    J Neurophysiol; 2003 Apr; 89(4):1784-96. PubMed ID: 12611996
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Real-time upper limb motion estimation from surface electromyography and joint angular velocities using an artificial neural network for human-machine cooperation.
    Kwon S; Kim J
    IEEE Trans Inf Technol Biomed; 2011 Jul; 15(4):522-30. PubMed ID: 21558060
    [TBL] [Abstract][Full Text] [Related]  

  • 50. What portion of the soft tissue artefact requires compensation when estimating joint kinematics?
    Dumas R; Camomilla V; Bonci T; Chèze L; Cappozzo A
    J Biomech Eng; 2015 Jun; 137(6):064502. PubMed ID: 25867934
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Design of a 6-DOF upper limb rehabilitation exoskeleton with parallel actuated joints.
    Chen Y; Li G; Zhu Y; Zhao J; Cai H
    Biomed Mater Eng; 2014; 24(6):2527-35. PubMed ID: 25226954
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A new method for estimating the axis of rotation and the center of rotation.
    Halvorsen K; Lesser M; Lundberg A
    J Biomech; 1999 Nov; 32(11):1221-7. PubMed ID: 10541073
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Kalman smoothing improves the estimation of joint kinematics and kinetics in marker-based human gait analysis.
    De Groote F; De Laet T; Jonkers I; De Schutter J
    J Biomech; 2008 Dec; 41(16):3390-8. PubMed ID: 19026414
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The contribution of the wrist, elbow and shoulder joints to single-finger tapping.
    Dennerlein JT; Kingma I; Visser B; van Dieën JH
    J Biomech; 2007; 40(13):3013-22. PubMed ID: 17467717
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Minimizing endpoint variability through reinforcement learning during reaching movements involving shoulder, elbow and wrist.
    Mehler DMA; Reichenbach A; Klein J; Diedrichsen J
    PLoS One; 2017; 12(7):e0180803. PubMed ID: 28719661
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Redundancy and joint limits of a seven degree of freedom upper limb exoskeleton.
    Miller LM; Kim H; Rosen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8154-7. PubMed ID: 22256234
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ubiquitous human upper-limb motion estimation using wearable sensors.
    Zhang ZQ; Wong WC; Wu JK
    IEEE Trans Inf Technol Biomed; 2011 Jul; 15(4):513-21. PubMed ID: 21659035
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Simulated activities of daily living do not replicate functional upper limb movement or reduce movement variability.
    Taylor SAF; Kedgley AE; Humphries A; Shaheen AF
    J Biomech; 2018 Jul; 76():119-128. PubMed ID: 29908656
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Perceived discomfort functions based on joint moment for various joint motion directions of the upper limb.
    Chihara T; Izumi T; Seo A
    Appl Ergon; 2014 Mar; 45(2):308-17. PubMed ID: 23684117
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sex differences in upper limb 3D joint contributions during a lifting task.
    Martinez R; Bouffard J; Michaud B; Plamondon A; Côté JN; Begon M
    Ergonomics; 2019 May; 62(5):682-693. PubMed ID: 30696384
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.