BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 12163513)

  • 21. Effects of the polyamine spermine on arterial chemoreception.
    Cayzac S; Rocher A; Obeso A; Gonzalez C; Kemp PJ; Riccardi D
    Adv Exp Med Biol; 2009; 648():97-104. PubMed ID: 19536470
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activation of BKCa channels via cyclic AMP- and cyclic GMP-dependent protein kinases by eugenosedin-A in rat basilar artery myocytes.
    Wu BN; Chen CF; Hong YR; Howng SL; Lin YL; Chen IJ
    Br J Pharmacol; 2007 Oct; 152(3):374-85. PubMed ID: 17700725
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of osmotic changes on the chemoreceptor cell of rat carotid body.
    Molnár Z; Petheo GL; Fülöp C; Spät A
    J Physiol; 2003 Jan; 546(Pt 2):471-81. PubMed ID: 12527733
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Behavior of junction channels between rat glomus cells during normoxia and hypoxia.
    Abudara V; Jiang RG; Eyzaguirre C
    J Neurophysiol; 2002 Aug; 88(2):639-49. PubMed ID: 12163517
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chronic hypoxia modulates the function and expression of melatonin receptors in the rat carotid body.
    Tjong YW; Chen Y; Liong EC; Tipoe GL; Fung ML
    J Pineal Res; 2006 Mar; 40(2):125-34. PubMed ID: 16441549
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CaV3.2 T-type Ca²⁺ channels in H₂S-mediated hypoxic response of the carotid body.
    Makarenko VV; Peng YJ; Yuan G; Fox AP; Kumar GK; Nanduri J; Prabhakar NR
    Am J Physiol Cell Physiol; 2015 Jan; 308(2):C146-54. PubMed ID: 25377087
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of relative hypoxia and hypercapnia on intracellular pH and membrane potential of cultured carotid body glomus cells.
    He SF; Wei JY; Eyzaguirre C
    Brain Res; 1991 Aug; 556(2):333-8. PubMed ID: 1933367
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extracellular pH changes in the superfused cat carotid body during hypoxia and hypercapnia.
    Delpiano MA; Acker H
    Brain Res; 1985 Sep; 342(2):273-80. PubMed ID: 4041828
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Orexin-B augments voltage-gated L-type Ca(2+) current via protein kinase C-mediated signalling pathway in ovine somatotropes.
    Xu R; Roh SG; Gong C; Hernandez M; Ueta Y; Chen C
    Neuroendocrinology; 2003 Mar; 77(3):141-52. PubMed ID: 12673048
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Peptidergic modulation of insect voltage-gated Ca(2+) currents: role of resting Ca(2+) current and protein kinases A and C.
    Wicher D
    J Neurophysiol; 2001 Nov; 86(5):2353-62. PubMed ID: 11698525
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemosensing at the carotid body. Involvement of a HERG-like potassium current in glomus cells.
    Overholt JL; Ficker E; Yang T; Shams H; Bright GR; Prabhakar NR
    Adv Exp Med Biol; 2000; 475():241-8. PubMed ID: 10849664
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Purinergic signalling mediates bidirectional crosstalk between chemoreceptor type I and glial-like type II cells of the rat carotid body.
    Murali S; Nurse CA
    J Physiol; 2016 Jan; 594(2):391-406. PubMed ID: 26537220
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calcium channel activation facilitated by nitric oxide in retinal ganglion cells.
    Hirooka K; Kourennyi DE; Barnes S
    J Neurophysiol; 2000 Jan; 83(1):198-206. PubMed ID: 10634867
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acidic regulation of junction channels between glomus cells in the rat carotid body. Possible role of [Ca(2+)](i).
    Abudara V; Jiang RG; Eyzaguirre C
    Brain Res; 2001 Oct; 916(1-2):50-60. PubMed ID: 11597590
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modulation of junctional conductance between rat carotid body glomus cells by hypoxia, cAMP and acidity.
    Abudara V; Eyzaguirre C
    Brain Res; 1998 May; 792(1):114-25. PubMed ID: 9593851
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inhibition of L-type Ca(2+) channels by carbon monoxide.
    Dallas ML; Scragg JL; Peers C
    Adv Exp Med Biol; 2009; 648():89-95. PubMed ID: 19536469
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acidosis inhibits spontaneous activity and membrane currents in myocytes isolated from the rabbit atrioventricular node.
    Cheng H; Smith GL; Orchard CH; Hancox JC
    J Mol Cell Cardiol; 2009 Jan; 46(1):75-85. PubMed ID: 18950636
    [TBL] [Abstract][Full Text] [Related]  

  • 38. TASK-1 (K
    Kang D; Wang J; Hogan JO; Kim D
    Adv Exp Med Biol; 2018; 1071():35-41. PubMed ID: 30357731
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Patch clamp study of mouse glomus cells using a whole carotid body.
    Yamaguchi S; Lande B; Kitajima T; Hori Y; Shirahata M
    Neurosci Lett; 2004 Mar; 357(2):155-7. PubMed ID: 15036598
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cellular mechanisms involved in carotid body inhibition produced by atrial natriuretic peptide.
    He L; Dinger B; Fidone S
    Am J Physiol Cell Physiol; 2000 Apr; 278(4):C845-52. PubMed ID: 10751332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.