These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 12163514)

  • 1. Effect of strength and speed of torque development on balance recovery with the ankle strategy.
    Robinovitch SN; Heller B; Lui A; Cortez J
    J Neurophysiol; 2002 Aug; 88(2):613-20. PubMed ID: 12163514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms underlying age-related differences in ability to recover balance with the ankle strategy.
    Mackey DC; Robinovitch SN
    Gait Posture; 2006 Jan; 23(1):59-68. PubMed ID: 16311196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of time to peak ankle torque on balance stability boundary: experimental validation of a biomechanical model.
    Simoneau M; Corbeil P
    Exp Brain Res; 2005 Aug; 165(2):217-28. PubMed ID: 15940496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postural steadiness during quiet stance does not associate with ability to recover balance in older women.
    Mackey DC; Robinovitch SN
    Clin Biomech (Bristol, Avon); 2005 Oct; 20(8):776-83. PubMed ID: 16006022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordination of muscle torques stabilizes upright standing posture: an UCM analysis.
    Park E; Reimann H; Schöner G
    Exp Brain Res; 2016 Jun; 234(6):1757-67. PubMed ID: 26879770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of altering neural, muscular and tendinous factors associated with aging on balance recovery using the ankle strategy: a simulation study.
    Barrett RS; Lichtwark GA
    J Theor Biol; 2008 Oct; 254(3):546-54. PubMed ID: 18639557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ankle intrinsic stiffness changes with postural sway.
    Amiri P; Kearney RE
    J Biomech; 2019 Mar; 85():50-58. PubMed ID: 30655078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elderly subjects' ability to recover balance with a single backward step associates with body configuration at step contact.
    Hsiao ET; Robinovitch SN
    J Gerontol A Biol Sci Med Sci; 2001 Jan; 56(1):M42-7. PubMed ID: 11193232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of heel lifting in standing balance recovery: A simulation study.
    Cheng KB; Tanabe H; Chen WC; Chiu HT
    J Biomech; 2018 Jan; 67():69-77. PubMed ID: 29221901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relative effects of weight loss and strength training on balance recovery.
    Matrangola SL; Madigan ML
    Med Sci Sports Exerc; 2009 Jul; 41(7):1488-93. PubMed ID: 19516151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The involvement of ankle muscles in maintaining balance in the upright posture is higher in elderly fallers.
    Cattagni T; Scaglioni G; Laroche D; Gremeaux V; Martin A
    Exp Gerontol; 2016 May; 77():38-45. PubMed ID: 26899564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship Between Balance Recovery From a Forward Fall and Lower-Limb Rate of Torque Development.
    Ochi A; Ohko H; Hayashi T; Osawa T; Sugiyama Y; Nakamura S; Ibuki S; Ichihashi N
    J Mot Behav; 2020; 52(1):71-78. PubMed ID: 30915901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a sliding mode control model for quiet upright stance.
    Zhang H; Nussbaum MA; Agnew MJ
    Med Eng Phys; 2016 Feb; 38(2):204-8. PubMed ID: 26810735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of initial movement dynamics on human responses to postural perturbations.
    Murnaghan CD; Robinovitch SN
    Hum Mov Sci; 2013 Aug; 32(4):857-65. PubMed ID: 23958475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuromusculoskeletal torque-generation process has a large destabilizing effect on the control mechanism of quiet standing.
    Masani K; Vette AH; Kawashima N; Popovic MR
    J Neurophysiol; 2008 Sep; 100(3):1465-75. PubMed ID: 18596181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sway-dependent changes in standing ankle stiffness caused by muscle thixotropy.
    Sakanaka TE; Lakie M; Reynolds RF
    J Physiol; 2016 Feb; 594(3):781-93. PubMed ID: 26607292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related changes in rate and magnitude of ankle torque development: implications for balance control.
    Hall CD; Woollacott MH; Jensen JL
    J Gerontol A Biol Sci Med Sci; 1999 Oct; 54(10):M507-13. PubMed ID: 10568533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The passive, human calf muscles in relation to standing: the non-linear decrease from short range to long range stiffness.
    Loram ID; Maganaris CN; Lakie M
    J Physiol; 2007 Oct; 584(Pt 2):661-75. PubMed ID: 17823209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age and gender differences in peak lower extremity joint torques and ranges of motion used during single-step balance recovery from a forward fall.
    Wojcik LA; Thelen DG; Schultz AB; Ashton-Miller JA; Alexander NB
    J Biomech; 2001 Jan; 34(1):67-73. PubMed ID: 11425082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human balancing of an inverted pendulum: is sway size controlled by ankle impedance?
    Loram ID; Kelly SM; Lakie M
    J Physiol; 2001 May; 532(Pt 3):879-91. PubMed ID: 11313453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.