BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 12163517)

  • 41. Augmentation of hypoxia-induced nitric oxide generation in the rat carotid body adapted to chronic hypoxia: an involvement of constitutive and inducible nitric oxide synthases.
    Ye JS; Tipoe GL; Fung PC; Fung ML
    Pflugers Arch; 2002 May; 444(1-2):178-85. PubMed ID: 11976930
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Intracellular sodium and calcium homeostasis during hypoxia in dopamine neurons of rat substantia nigra pars compacta.
    Guatteo E; Mercuri NB; Bernardi G; Knöpfel T
    J Neurophysiol; 1998 Nov; 80(5):2237-43. PubMed ID: 9819239
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The electrical behaviour of rat connexin46 gap junction channels expressed in transfected HeLa cells.
    Sakai R; Elfgang C; Vogel R; Willecke K; Weingart R
    Pflugers Arch; 2003 Sep; 446(6):714-27. PubMed ID: 12861414
    [TBL] [Abstract][Full Text] [Related]  

  • 44. RT-PCR and pharmacological analysis of L-and T-type calcium channels in rat carotid body.
    Cáceres AI; Gonzalez-Obeso E; Gonzalez C; Rocher A
    Adv Exp Med Biol; 2009; 648():105-12. PubMed ID: 19536471
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The influence of gap junction network complexity on pulmonary artery smooth muscle reactivity in normoxic and chronically hypoxic conditions.
    Gosak M; Guibert C; Billaud M; Roux E; Marhl M
    Exp Physiol; 2014 Jan; 99(1):272-85. PubMed ID: 24036594
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhanced BDNF signalling following chronic hypoxia potentiates catecholamine release from cultured rat adrenal chromaffin cells.
    Scott AL; Zhang M; Nurse CA
    J Physiol; 2015 Aug; 593(15):3281-99. PubMed ID: 26095976
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Functional formation of heterotypic gap junction channels by connexins-40 and -43.
    Lin X; Xu Q; Veenstra RD
    Channels (Austin); 2014; 8(5):433-43. PubMed ID: 25483586
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chloride channels in cultured glomus cells of the rat carotid body.
    Stea A; Nurse CA
    Am J Physiol; 1989 Aug; 257(2 Pt 1):C174-81. PubMed ID: 2475025
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of prolonged hypobaric hypoxia on carotid nerve endings and glomus cells. Changes in intercellular coupling.
    Jiang RG; Eyzaguirre C
    Brain Res; 2006 Mar; 1076(1):198-208. PubMed ID: 16472784
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biophysical properties of gap junction channels formed by mouse connexin40 in induced pairs of transfected human HeLa cells.
    Bukauskas FF; Elfgang C; Willecke K; Weingart R
    Biophys J; 1995 Jun; 68(6):2289-98. PubMed ID: 7544165
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Expression and regulation of connexins in cultured ventricular myocytes isolated from adult rat hearts.
    Polontchouk LO; Valiunas V; Haefliger JA; Eppenberger HM; Weingart R
    Pflugers Arch; 2002 Mar; 443(5-6):676-89. PubMed ID: 11889564
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Differential effects of halothane and isoflurane on carotid body glomus cell intracellular Ca2+ and background K+ channel responses to hypoxia.
    Pandit JJ; Winter V; Bayliss R; Buckler KJ
    Adv Exp Med Biol; 2010; 669():205-8. PubMed ID: 20217350
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cardiac gap junction channel activity in embryonic chick ventricle cells.
    Veenstra RD; DeHaan RL
    Am J Physiol; 1988 Jan; 254(1 Pt 2):H170-80. PubMed ID: 3337253
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulation of gill transcellular permeability and renal function during acute hypoxia in the Amazonian oscar (Astronotus ocellatus): new angles to the osmorespiratory compromise.
    Wood CM; Iftikar FI; Scott GR; De Boeck G; Sloman KA; Matey V; Valdez Domingos FX; Duarte RM; Almeida-Val VM; Val AL
    J Exp Biol; 2009 Jun; 212(Pt 12):1949-64. PubMed ID: 19483013
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanism of inhibition by hydrogen sulfide of native and recombinant BKCa channels.
    Telezhkin V; Brazier SP; Cayzac SH; Wilkinson WJ; Riccardi D; Kemp PJ
    Respir Physiol Neurobiol; 2010 Jul; 172(3):169-78. PubMed ID: 20576528
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Regulation of ion fluxes, cell volume and gap junctional coupling by cGMP in GFSHR-17 granulosa cells.
    Ngezahayo A; Altmann B; Kolb HA
    J Membr Biol; 2003 Aug; 194(3):165-76. PubMed ID: 14502429
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of Na+ and K+ channel blockade on baseline and anoxia-induced catecholamine release from rat carotid body.
    Doyle TP; Donnelly DF
    J Appl Physiol (1985); 1994 Dec; 77(6):2606-11. PubMed ID: 7896598
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Possible role of coupling between glomus cells in carotid body chemoreception.
    Eyzaguirre C; Abudara V
    Biol Signals; 1995; 4(5):263-70. PubMed ID: 8704826
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Different effects of hypoxia on the membrane potential and input resistance of isolated and clustered carotid body glomus cells.
    Pang L; Eyzaguirre C
    Brain Res; 1992 Mar; 575(1):167-73. PubMed ID: 1504779
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A standing Na+ conductance in rat carotid body type I cells.
    Carpenter E; Peers C
    Neuroreport; 2001 May; 12(7):1421-5. PubMed ID: 11388422
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.