BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 12163531)

  • 1. L-type calcium channel-mediated plateau potentials in barrelette cells during structural plasticity.
    Lo FS; Erzurumlu RS
    J Neurophysiol; 2002 Aug; 88(2):794-801. PubMed ID: 12163531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiological properties and synaptic responses of cells in the trigeminal principal sensory nucleus of postnatal rats.
    Lo FS; Guido W; Erzurumlu RS
    J Neurophysiol; 1999 Nov; 82(5):2765-75. PubMed ID: 10561443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptic mechanisms regulating the activation of a Ca(2+)-mediated plateau potential in developing relay cells of the LGN.
    Lo FS; Ziburkus J; Guido W
    J Neurophysiol; 2002 Mar; 87(3):1175-85. PubMed ID: 11877491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neonatal deafferentation does not alter membrane properties of trigeminal nucleus principalis neurons.
    Lo FS; Erzurumlu RS
    J Neurophysiol; 2001 Mar; 85(3):1088-96. PubMed ID: 11247979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptic plasticity in the trigeminal principal nucleus during the period of barrelette formation and consolidation.
    Guido W; Lo FS; Erzurumlu RS
    Brain Res Dev Brain Res; 2001 Dec; 132(1):97-102. PubMed ID: 11744112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinal input induces three firing patterns in neurons of the superficial superior colliculus of neonatal rats.
    Lo FS; Mize RR
    J Neurophysiol; 1999 Feb; 81(2):954-8. PubMed ID: 10036294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiology and pharmacology of corticothalamic stimulation-evoked responses in rat somatosensory thalamic neurons in vitro.
    Kao CQ; Coulter DA
    J Neurophysiol; 1997 May; 77(5):2661-76. PubMed ID: 9163382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tetanic stimulation induces short-term potentiation of inhibitory synaptic activity in the rostral nucleus of the solitary tract.
    Grabauskas G; Bradley RM
    J Neurophysiol; 1998 Feb; 79(2):595-604. PubMed ID: 9463424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional synaptic projections onto subplate neurons in neonatal rat somatosensory cortex.
    Hanganu IL; Kilb W; Luhmann HJ
    J Neurosci; 2002 Aug; 22(16):7165-76. PubMed ID: 12177212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMDA receptors and L-type voltage-gated Ca²⁺ channels mediate the expression of bidirectional homeostatic intrinsic plasticity in cultured hippocampal neurons.
    Lee KY; Chung HJ
    Neuroscience; 2014 Sep; 277():610-23. PubMed ID: 25086314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depression of glutamatergic and GABAergic synaptic responses in striatal spiny neurons by stimulation of presynaptic GABAB receptors.
    Nisenbaum ES; Berger TW; Grace AA
    Synapse; 1993 Jul; 14(3):221-42. PubMed ID: 8105549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulation-induced responses of the trigeminal caudal neurons in the brainstem preparation isolated from newborn rats.
    Hamba M
    Brain Res; 1998 Feb; 785(1):66-74. PubMed ID: 9526048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-term plasticity at inhibitory synapses in rat striatum and its effects on striatal output.
    Fitzpatrick JS; Akopian G; Walsh JP
    J Neurophysiol; 2001 May; 85(5):2088-99. PubMed ID: 11353025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postnatal maturation of the GABAergic system in rat neocortex.
    Luhmann HJ; Prince DA
    J Neurophysiol; 1991 Feb; 65(2):247-63. PubMed ID: 1673153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitory transmission in the basolateral amygdala.
    Rainnie DG; Asprodini EK; Shinnick-Gallagher P
    J Neurophysiol; 1991 Sep; 66(3):999-1009. PubMed ID: 1684384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slow afterhyperpolarization governs the development of NMDA receptor-dependent afterdepolarization in CA1 pyramidal neurons during synaptic stimulation.
    Wu WW; Chan CS; Disterhoft JF
    J Neurophysiol; 2004 Oct; 92(4):2346-56. PubMed ID: 15190096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMDA receptor-dependent regulation of axonal and dendritic branching.
    Lee LJ; Lo FS; Erzurumlu RS
    J Neurosci; 2005 Mar; 25(9):2304-11. PubMed ID: 15745956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postnatal development of inhibitory synaptic transmission in the rostral nucleus of the solitary tract.
    Grabauskas G; Bradley RM
    J Neurophysiol; 2001 May; 85(5):2203-12. PubMed ID: 11353035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subthalamic stimulation-induced synaptic responses in substantia nigra pars compacta dopaminergic neurons in vitro.
    Iribe Y; Moore K; Pang KC; Tepper JM
    J Neurophysiol; 1999 Aug; 82(2):925-33. PubMed ID: 10444687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental changes in the electrophysiological properties of brain stem trigeminal neurons during pattern (barrelette) formation.
    Guido W; Günhan-Agar E; Erzurumlu RS
    J Neurophysiol; 1998 Mar; 79(3):1295-306. PubMed ID: 9497411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.