These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 12163554)

  • 41. Functional modification of agonist-antagonist electromyographic activity for rapid movement inhibition.
    Kudo K; Ohtsuki T
    Exp Brain Res; 1998 Sep; 122(1):23-30. PubMed ID: 9772108
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multijoint reflex responses to constant-velocity volitional movements of the stroke elbow.
    Sangani SG; Starsky AJ; McGuire JR; Schmit BD
    J Neurophysiol; 2009 Sep; 102(3):1398-410. PubMed ID: 19553478
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Time course and temporal order of changes in movement kinematics during learning of fast and accurate elbow flexions.
    Flament D; Shapiro MB; Kempf T; Corcos DM
    Exp Brain Res; 1999 Dec; 129(3):441-50. PubMed ID: 10591915
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Muscle activation during resistance training with no external load - effects of training status, movement velocity, dominance, and visual feedback.
    Gentil P; Bottaro M; Noll M; Werner S; Vasconcelos JC; Seffrin A; Campos MH
    Physiol Behav; 2017 Oct; 179():148-152. PubMed ID: 28606773
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Threshold control of arm posture and movement adaptation to load.
    Foisy M; Feldman AG
    Exp Brain Res; 2006 Nov; 175(4):726-44. PubMed ID: 16847611
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neural compensation for fatigue-induced changes in muscle stiffness during perturbations of elbow angle in human.
    Kirsch RF; Rymer WZ
    J Neurophysiol; 1992 Aug; 68(2):449-70. PubMed ID: 1527569
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fast corrective responses are evoked by perturbations approaching the natural variability of posture and movement tasks.
    Crevecoeur F; Kurtzer I; Scott SH
    J Neurophysiol; 2012 May; 107(10):2821-32. PubMed ID: 22357792
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Muscle activity patterns during quick increase of movement amplitude in rapid elbow extensions.
    Takatoku N; Fujiwara M
    J Electromyogr Kinesiol; 2010 Apr; 20(2):290-7. PubMed ID: 19375349
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Organizing principles for voluntary movement: extending single-joint rules.
    Almeida GL; Hong DA; Corcos D; Gottlieb GL
    J Neurophysiol; 1995 Oct; 74(4):1374-81. PubMed ID: 8989378
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Wipe and flexion reflexes of the frog. I. Kinematics and EMG patterns.
    Schotland JL; Rymer WZ
    J Neurophysiol; 1993 May; 69(5):1725-35. PubMed ID: 8509833
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electromyographic and biomechanical characteristics of segmental postural adjustments associated with voluntary wrist movements. Influence of an elbow support.
    Chabran E; Maton B; Ribreau C; Fourment A
    Exp Brain Res; 2001 Nov; 141(2):133-45. PubMed ID: 11713625
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Independent control of voluntary movements and associated anticipatory postural responses in a bimanual task.
    Taylor JL
    Clin Neurophysiol; 2005 Sep; 116(9):2083-90. PubMed ID: 16043400
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Facilitation of quadriceps activation following a concentrically controlled knee flexion movement: the influence of transition rate.
    Jeon HS; Trimble MH; Brunt D; Robinson ME
    J Orthop Sports Phys Ther; 2001 Mar; 31(3):122-9; discussion 130-2. PubMed ID: 11297017
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Muscle activation is different when the same muscle acts as an agonist or an antagonist during voluntary movement.
    Shapiro MB; Prodoehl J; Corcos DM; Gottlieb GL
    J Mot Behav; 2005 Mar; 37(2):135-45. PubMed ID: 15730947
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of inertial load and velocity on the braking process of voluntary limb movements.
    Lestienne F
    Exp Brain Res; 1979 May; 35(3):407-18. PubMed ID: 456449
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electromyographic control of movement time in a rapid aiming movement.
    Sherwood DE
    Percept Mot Skills; 2008 Oct; 107(2):353-64. PubMed ID: 19093597
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Neural coupling of cooperative hand movements: a reflex and fMRI study.
    Dietz V; Macauda G; Schrafl-Altermatt M; Wirz M; Kloter E; Michels L
    Cereb Cortex; 2015 Apr; 25(4):948-58. PubMed ID: 24122137
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Movement-related phasic muscle activation. II. Generation and functional role of the triphasic pattern.
    Cooke JD; Brown SH
    J Neurophysiol; 1990 Mar; 63(3):465-72. PubMed ID: 2329356
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Trial-by-trial analysis or averaging: implications for electromyographic models of rapid limb control.
    Sherwood DE; Enebo BA
    Res Q Exerc Sport; 2007 Sep; 78(4):307-17. PubMed ID: 17941535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.