These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 12164377)

  • 1. Drug transport into the mammalian brain: the nasal pathway and its specific metabolic barrier.
    Minn A; Leclerc S; Heydel JM; Minn AL; Denizcot C; Cattarelli M; Netter P; Gradinaru D
    J Drug Target; 2002 Jun; 10(4):285-96. PubMed ID: 12164377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intranasal drug delivery to the central nervous system: present status and future outlook.
    Tayebati SK; Nwankwo IE; Amenta F
    Curr Pharm Des; 2013; 19(3):510-26. PubMed ID: 23116337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction.
    Engelhardt B; Sorokin L
    Semin Immunopathol; 2009 Nov; 31(4):497-511. PubMed ID: 19779720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct transport of VEGF from the nasal cavity to brain.
    Yang JP; Liu HJ; Cheng SM; Wang ZL; Cheng X; Yu HX; Liu XF
    Neurosci Lett; 2009 Jan; 449(2):108-11. PubMed ID: 18996442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intranasal Drug Delivery: A Non-Invasive Approach for the Better Delivery of Neurotherapeutics.
    Kumar H; Mishra G; Sharma AK; Gothwal A; Kesharwani P; Gupta U
    Pharm Nanotechnol; 2017; 5(3):203-214. PubMed ID: 28521670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of intranasal delivery route of drug administration for brain targeting.
    Erdő F; Bors LA; Farkas D; Bajza Á; Gizurarson S
    Brain Res Bull; 2018 Oct; 143():155-170. PubMed ID: 30449731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macromolecular drug transport into the brain using targeted therapy.
    Lichota J; Skjørringe T; Thomsen LB; Moos T
    J Neurochem; 2010 Apr; 113(1):1-13. PubMed ID: 20015155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of direct transport pathways of glycine receptor antagonists and an angiotensin antagonist from the nasal cavity to the central nervous system in the rat model.
    Charlton ST; Whetstone J; Fayinka ST; Read KD; Illum L; Davis SS
    Pharm Res; 2008 Jul; 25(7):1531-43. PubMed ID: 18293062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leptin transport at the blood--cerebrospinal fluid barrier using the perfused sheep choroid plexus model.
    Thomas SA; Preston JE; Wilson MR; Farrell CL; Segal MB
    Brain Res; 2001 Mar; 895(1-2):283-90. PubMed ID: 11259792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration.
    Thorne RG; Pronk GJ; Padmanabhan V; Frey WH
    Neuroscience; 2004; 127(2):481-96. PubMed ID: 15262337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential regulation of leptin transport by the choroid plexus and blood-brain barrier and high affinity transport systems for entry into hypothalamus and across the blood-cerebrospinal fluid barrier.
    Zlokovic BV; Jovanovic S; Miao W; Samara S; Verma S; Farrell CL
    Endocrinology; 2000 Apr; 141(4):1434-41. PubMed ID: 10746647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of intranasal drug delivery directly to the brain.
    Crowe TP; Greenlee MHW; Kanthasamy AG; Hsu WH
    Life Sci; 2018 Feb; 195():44-52. PubMed ID: 29277310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Demonstration of a coupled metabolism-efflux process at the choroid plexus as a mechanism of brain protection toward xenobiotics.
    Strazielle N; Ghersi-Egea JF
    J Neurosci; 1999 Aug; 19(15):6275-89. PubMed ID: 10414957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detoxification systems, passive and specific transport for drugs at the blood-CSF barrier in normal and pathological situations.
    Strazielle N; Khuth ST; Ghersi-Egea JF
    Adv Drug Deliv Rev; 2004 Oct; 56(12):1717-40. PubMed ID: 15381331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain iron homeostasis.
    Moos T
    Dan Med Bull; 2002 Nov; 49(4):279-301. PubMed ID: 12553165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental aspects of blood-brain barrier (BBB) and rat brain endothelial (RBE4) cells as in vitro model for studies on chlorpyrifos transport.
    Yang J; Aschner M
    Neurotoxicology; 2003 Aug; 24(4-5):741-5. PubMed ID: 12900088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct nose-to-brain delivery of lamotrigine following intranasal administration to mice.
    Serralheiro A; Alves G; Fortuna A; Falcão A
    Int J Pharm; 2015 Jul; 490(1-2):39-46. PubMed ID: 25979854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The blood-brain barrier and nasal drug delivery to the central nervous system.
    Miyake MM; Bleier BS
    Am J Rhinol Allergy; 2015; 29(2):124-7. PubMed ID: 25785753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood-brain barrier: an excellent platform for brain targeting.
    Pardeshi CV; Belgamwar VS
    Expert Opin Drug Deliv; 2013 Jul; 10(7):957-72. PubMed ID: 23586809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug delivery to brain via the blood-brain barrier.
    Scherrmann JM
    Vascul Pharmacol; 2002 Jun; 38(6):349-54. PubMed ID: 12529929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.