These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 12164501)
21. [A structural and thermodynamic analysis of novatrone and flavin mononucleotide heteroassociation in aqueous solution by 1H NMR spectroscopy]. Veselkov AN; Evstigneev MP; Rozvadovskaia AO; Mukhina IuV; Davies DB Bioorg Khim; 2005; 31(5):503-10. PubMed ID: 16245693 [TBL] [Abstract][Full Text] [Related]
22. Role of glutamate-59 hydrogen bonded to N(3)H of the flavin mononucleotide cofactor in the modulation of the redox potentials of the Clostridium beijerinckii flavodoxin. Glutamate-59 is not responsible for the pH dependency but contributes to the stabilization of the flavin semiquinone. Bradley LH; Swenson RP Biochemistry; 1999 Sep; 38(38):12377-86. PubMed ID: 10493805 [TBL] [Abstract][Full Text] [Related]
23. Electronic structure of the lowest triplet state of flavin mononucleotide. Kammler L; van Gastel M J Phys Chem A; 2012 Oct; 116(41):10090-8. PubMed ID: 22998491 [TBL] [Abstract][Full Text] [Related]
24. Electron transfer from aromatic amino acids to triplet quinones. Görner H J Photochem Photobiol B; 2007 Sep; 88(2-3):83-9. PubMed ID: 17604179 [TBL] [Abstract][Full Text] [Related]
25. Stopped flow studies on the nonenzymatic reduction of methemoglobin by reduced flavin mononucleotide. Yubisui T; Matsukawa S; Yoneyama Y J Biol Chem; 1980 Dec; 255(24):11694-7. PubMed ID: 7440566 [TBL] [Abstract][Full Text] [Related]
27. The effects of pH and semiquinone formation on the oxidation-reduction potentials of flavin mononucleotide. A reappraisal. Mayhew SG Eur J Biochem; 1999 Oct; 265(2):698-702. PubMed ID: 10504402 [TBL] [Abstract][Full Text] [Related]
28. Single turnover kinetics of tryptophan hydroxylase: evidence for a new intermediate in the reaction of the aromatic amino acid hydroxylases. Pavon JA; Eser B; Huynh MT; Fitzpatrick PF Biochemistry; 2010 Sep; 49(35):7563-71. PubMed ID: 20687613 [TBL] [Abstract][Full Text] [Related]
29. Charge transfer in peptides. Pulse radiolysis investigation of one-electron reactions in dipeptides of tryptophan and tyrosine. Prütz WA; Land EJ Int J Radiat Biol Relat Stud Phys Chem Med; 1979 Nov; 36(5):513-20. PubMed ID: 317499 [TBL] [Abstract][Full Text] [Related]
30. Ultrafast deactivation mechanisms of protonated aromatic amino acids following UV excitation. Kang H; Jouvet C; Dedonder-Lardeux C; Martrenchard S; Grégoire G; Desfrançois C; Schermann JP; Barat M; Fayeton JA Phys Chem Chem Phys; 2005 Jan; 7(2):394-8. PubMed ID: 19785164 [TBL] [Abstract][Full Text] [Related]
31. [Heteroassociation of antibiotic norfloxacin with aromatic vitamins in aqueous solution]. Evstigneev MP; Rybakova KA; Davies DB Biofizika; 2006; 51(4):661-8. PubMed ID: 16909844 [TBL] [Abstract][Full Text] [Related]
32. The chemistry of flavins and flavoproteins: aerobic photochemistry. Penzer GR Biochem J; 1970 Feb; 116(4):733-43. PubMed ID: 4392239 [TBL] [Abstract][Full Text] [Related]
33. Long range electron transfer between tyrosine and tryptophan in hen egg-white lysozyme. Weinstein M; Alfassi ZB; DeFelippis MR; Klapper MH; Faraggi M Biochim Biophys Acta; 1991 Jan; 1076(2):173-8. PubMed ID: 1998717 [TBL] [Abstract][Full Text] [Related]
34. Revisiting the Origin of Bacterial Bioluminescence: QM/MM Study on Oxygenation Reaction of Reduced Flavin in Protein. Luo Y; Liu YJ Chemphyschem; 2019 Feb; 20(3):405-409. PubMed ID: 30417568 [TBL] [Abstract][Full Text] [Related]
35. Radical formation in the FMN-photosensitized reactions of unsaturated fatty acids bearing double bonds at different positions. Nishihama N; Iwahashi H J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Aug; 1028():216-221. PubMed ID: 27372435 [TBL] [Abstract][Full Text] [Related]
36. Theoretical and experimental investigations on the reactions of positively charged phenyl radicals with aromatic amino acids. Huang Y; Kenttämaa H J Am Chem Soc; 2005 Jun; 127(21):7952-60. PubMed ID: 15913386 [TBL] [Abstract][Full Text] [Related]
37. Mechanism of flavin mononucleotide cofactor binding to the Desulfovibrio vulgaris flavodoxin. 1. Kinetic evidence for cooperative effects associated with the binding of inorganic phosphate and the 5'-phosphate moiety of the cofactor. Murray TA; Swenson RP Biochemistry; 2003 Mar; 42(8):2307-16. PubMed ID: 12600198 [TBL] [Abstract][Full Text] [Related]
38. Redox reactions of reduced flavin mononucleotide (FMN), riboflavin (RBF), and anthraquinone-2,6-disulfonate (AQDS) with ferrihydrite and lepidocrocite. Shi Z; Zachara JM; Shi L; Wang Z; Moore DA; Kennedy DW; Fredrickson JK Environ Sci Technol; 2012 Nov; 46(21):11644-52. PubMed ID: 22985396 [TBL] [Abstract][Full Text] [Related]
39. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site. Cénas N; Lê KH; Terrier M; Lederer F Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777 [TBL] [Abstract][Full Text] [Related]
40. Site-directed mutagenesis of tyrosine-98 in the flavodoxin from Desulfovibrio vulgaris (Hildenborough): regulation of oxidation-reduction properties of the bound FMN cofactor by aromatic, solvent, and electrostatic interactions. Swenson RP; Krey GD Biochemistry; 1994 Jul; 33(28):8505-14. PubMed ID: 8031784 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]