These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 12164501)
41. The midpoint potentials for the oxidized-semiquinone couple for Gly57 mutants of the Clostridium beijerinckii flavodoxin correlate with changes in the hydrogen-bonding interaction with the proton on N(5) of the reduced flavin mononucleotide cofactor as measured by NMR chemical shift temperature dependencies. Chang FC; Swenson RP Biochemistry; 1999 Jun; 38(22):7168-76. PubMed ID: 10353827 [TBL] [Abstract][Full Text] [Related]
42. On the role of aromatic side chains in the photoactivation of BLUF domains. Gauden M; Grinstead JS; Laan W; van Stokkum IH; Avila-Perez M; Toh KC; Boelens R; Kaptein R; van Grondelle R; Hellingwerf KJ; Kennis JT Biochemistry; 2007 Jun; 46(25):7405-15. PubMed ID: 17542622 [TBL] [Abstract][Full Text] [Related]
43. Insight into the chemistry of flavin reduction and oxidation in Escherichia coli dihydroorotate dehydrogenase obtained by rapid reaction studies. Palfey BA; Björnberg O; Jensen KF Biochemistry; 2001 Apr; 40(14):4381-90. PubMed ID: 11284694 [TBL] [Abstract][Full Text] [Related]
44. Reversibility of electron transfer in tryptophan-tyrosine peptide in acidic aqueous solution studied by time-resolved CIDNP. Morozova OB; Yurkovskaya AV; Sagdeev RZ J Phys Chem B; 2005 Mar; 109(8):3668-75. PubMed ID: 16851405 [TBL] [Abstract][Full Text] [Related]
45. Dihydroorotate dehydrogenase B of Enterococcus faecalis. Characterization and insights into chemical mechanism. Marcinkeviciene J; Tinney LM; Wang KH; Rogers MJ; Copeland RA Biochemistry; 1999 Oct; 38(40):13129-37. PubMed ID: 10529184 [TBL] [Abstract][Full Text] [Related]
46. Adsorption and Separation of Aromatic Amino Acids from Aqueous Solutions Using Metal-Organic Frameworks. Jonckheere D; Steele JA; Claes B; Bueken B; Claes L; Lagrain B; Roeffaers MBJ; De Vos DE ACS Appl Mater Interfaces; 2017 Sep; 9(35):30064-30073. PubMed ID: 28782925 [TBL] [Abstract][Full Text] [Related]
47. Reactivities of tyrosine, histidine, tryptophan, and methionine in radical pair formation in flavin triplet induced protein nuclear magnetic polarization. Muszkat KA; Wismontski-Knittel T Biochemistry; 1985 Sep; 24(20):5416-21. PubMed ID: 4074705 [TBL] [Abstract][Full Text] [Related]
48. Stopped-flow kinetic studies of flavin reduction in human cytochrome P450 reductase and its component domains. Gutierrez A; Lian LY; Wolf CR; Scrutton NS; Roberts GC Biochemistry; 2001 Feb; 40(7):1964-75. PubMed ID: 11329263 [TBL] [Abstract][Full Text] [Related]
49. Computational study on the attack of ·OH radicals on aromatic amino acids. Mujika JI; Uranga J; Matxain JM Chemistry; 2013 May; 19(21):6862-73. PubMed ID: 23536477 [TBL] [Abstract][Full Text] [Related]
50. Ultrafast 2D-IR spectroelectrochemistry of flavin mononucleotide. El Khoury Y; Van Wilderen LJ; Bredenbeck J J Chem Phys; 2015 Jun; 142(21):212416. PubMed ID: 26049436 [TBL] [Abstract][Full Text] [Related]
51. Mechanism of flavin mononucleotide cofactor binding to the Desulfovibrio vulgaris flavodoxin. 2. Evidence for cooperative conformational changes involving tryptophan 60 in the interaction between the phosphate- and ring-binding subsites. Murray TA; Foster MP; Swenson RP Biochemistry; 2003 Mar; 42(8):2317-27. PubMed ID: 12600199 [TBL] [Abstract][Full Text] [Related]
52. Oxygen uptake induced by electron transfer from donors to the triplet state of methylene blue and xanthene dyes in air-saturated aqueous solution. Görner H Photochem Photobiol Sci; 2008 Mar; 7(3):371-6. PubMed ID: 18389155 [TBL] [Abstract][Full Text] [Related]
53. Time dependent density functional theory modeling of specific rotation and optical rotatory dispersion of the aromatic amino acids in solution. Kundrat MD; Autschbach J J Phys Chem A; 2006 Nov; 110(47):12908-17. PubMed ID: 17125308 [TBL] [Abstract][Full Text] [Related]
54. Role of adenine in thymine-dimer repair by reduced flavin-adenine dinucleotide. Li G; Sichula V; Glusac KD J Phys Chem B; 2008 Aug; 112(34):10758-64. PubMed ID: 18681479 [TBL] [Abstract][Full Text] [Related]
55. Pulse radiolysis studies of intramolecular electron transfer in model peptides and proteins. 7. Trp-->TyrO radical transformation in hen egg-white lysozyme. Effects of pH, temperature, Trp62 oxidation and inhibitor binding. Bobrowski K; Holcman J; Poznanski J; Wierzchowski KL Biophys Chem; 1997 Jan; 63(2-3):153-66. PubMed ID: 9108690 [TBL] [Abstract][Full Text] [Related]
56. [Release of flavin from the mitochondrial NADH-dehydrogenase complex]. Sokolova IB; Vekshin NL Biofizika; 2008; 53(1):73-7. PubMed ID: 18488504 [TBL] [Abstract][Full Text] [Related]
57. Structure and oxidation-reduction behavior of 1-deaza-FMN flavodoxins: modulation of redox potentials in flavodoxins. Ludwig ML; Schopfer LM; Metzger AL; Pattridge KA; Massey V Biochemistry; 1990 Nov; 29(45):10364-75. PubMed ID: 2261478 [TBL] [Abstract][Full Text] [Related]
58. Intramolecular electron transfer in yeast flavocytochrome b2 upon one-electron photooxidation of the fully reduced enzyme: evidence for redox state control of heme-flavin communication. Hazzard JT; McDonough CA; Tollin G Biochemistry; 1994 Nov; 33(45):13445-54. PubMed ID: 7947753 [TBL] [Abstract][Full Text] [Related]
59. Detecting a new source for photochemically induced dynamic nuclear polarization in the LOV2 domain of phototropin by magnetic-field dependent (13)C NMR spectroscopy. Kothe G; Lukaschek M; Link G; Kacprzak S; Illarionov B; Fischer M; Eisenreich W; Bacher A; Weber S J Phys Chem B; 2014 Oct; 118(40):11622-32. PubMed ID: 25207844 [TBL] [Abstract][Full Text] [Related]
60. Proton-coupled electron transfer of flavodoxin immobilized on nanostructured tin dioxide electrodes: thermodynamics versus kinetics control of protein redox function. Astuti Y; Topoglidis E; Briscoe PB; Fantuzzi A; Gilardi G; Durrant JR J Am Chem Soc; 2004 Jun; 126(25):8001-9. PubMed ID: 15212550 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]